Experimental and numerical simulations of heat transfers between flowing water and a horizontal frozen porous medium
Abstract
In permafrost-affected regions, hydrological changes due to global warming are still under investigation. But yet, we can already foresee from recent studies that for example, the variability and intensity of surface/subsurface flow are likely to be affected by permafrost degradation. And the feedback induced by such changes on permafrost degradation is still not clearly assessed. Of particular interest are lake and river-taliks. A talik is a permanently unfrozen zone that lies below rivers or lake. They should play a key role in these interactions given that they are the only paths for groundwater flow in permafrost regions. Thus heat transfers on a regional scale are potentially influenced by groundwater circulation. The aim of our study is therefore to investigate the evolution of river taliks. We developed a multidisciplinary approach coupling field investigation, experimental studies in a cold room and numerical modeling. In Central Yakutia, Siberia, where permafrost is continuous, we recently installed instruments to monitor ground temperature and water pressure in a river talik between two thermokarst lakes. We present here the coupling of numerical modeling and laboratory experiments in order to look after the main parameters controlling river-talik installation. In a cold room at IDES, where a metric scale channel is filled with sand as a porous medium, we are able to control air, water and permafrost temperature, but also water flow, so that we can test various parameter sets for a miniaturized river. These results are confronted with a numerical model developed at the LSCE with Cast3m (www-cast3m.cea.fr), that couples heat and water transfer. In particular, expressions for river-talik heat exchange terms are investigated. A further step will come in the near future with results from field investigation providing the full complexity of a natural system. Keywords: Talik, River, Numerical Modeling, Cold Room, Permafrost.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.C53A0531R
- Keywords:
-
- 1830 HYDROLOGY Groundwater/surface water interaction;
- 0702 CRYOSPHERE Permafrost;
- 1847 HYDROLOGY Modeling