Investigating hydrologic controls on glacier velocity using 222Rn as a proxy for variable subglacial pressure
Abstract
Each summer, meltwater forms on the surface of the Greenland Ice Sheet and travels through cracks and moulins to the ice-bed. There, hydraulic pressure in cavities and channels controls glacial sliding; coincident with the highest hydraulic pressures are the fastest annual glacial speeds. Meltwater pathways at the ice-bed undergo a seasonal evolution from high-pressure, inefficient linked-cavity systems at the onset of spring melt to low-pressure, high-capacity channelized systems by midsummer. Radon-222 (t1/2 = 3.8 days) is a promising new tool for glaciology (Bhatia et al., 2011) as it is injected into meltwater during interaction with sediment and rock through the radioactive decay of naturally occurring 226Ra. Therefore in proglacial rivers, 222Rn can be assumed to trace fluxes of subglacial groundwater or meltwater transiently stored at the ice-bed. Radon-222 was quantified in the proglacial river of Leverett Glacier, a large outlet glacier of the Greenland Ice Sheet, during the summers of 2011 (May 8th - August 10th) and 2012 (May 12th - August 1st). Continuous (hourly) measurements were made using a RAD-7 (Durridge Inc.) with gas-permeable tubing in place of the air-water equilibrator. We estimated englacial meltwater storage as the difference between proglacial river discharge and meltwater inputs, calculated from a positive degree-day melt model based on temperature sensors on the ice surface and MODIS satellite imagery to determine the timing and size of supraglacial lake drainage events. Periods of high glacial velocity displayed strong subdiurnal covariations with 222Rn. We hypothesize that this is the result of increasing englacial meltwater storage, channel pressurization and 222Rn tracing groundwater fluxes. When pressure is rising in channels, meltwater is driven distally into adjacent linked cavity networks where it is temporarily stored while channel pressures are centrifugal. During these periods, meltwater traveling though channels likely has minimal interaction with the bed and therefore accumulates negligible amounts of 222Rn. Instead, during periods of channel pressurization 222Rn likely traces the flux of groundwater. As groundwater discharge to the ice margin is controlled by pressure at the ice-bed, periods of increasing channel pressurization and englacial storage will result in groundwater fluxes proportional to hydraulic pressure and, consequently, ice velocity. In support of this hypothesis, we observed the largest fluxes of 222Rn in the proglacial river during multi-day periods of low glacial velocity. These observations are consistent with channel depressurization and drainage of meltwater stored in linked cavity systems. Bhatia, M.P., Das, S.B., Kujawinski, E.B., Henderson, P., Burke, A., Charette, M.A., 2011. Seasonal evolution of water contributions to discharge from a Greenland outlet glacier: insight from a new isotope-mixing model. J Glaciol 57, 929-941.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.C33B0735L
- Keywords:
-
- 0720 CRYOSPHERE Glaciers;
- 1040 GEOCHEMISTRY Radiogenic isotope geochemistry;
- 1827 HYDROLOGY Glaciology;
- 1829 HYDROLOGY Groundwater hydrology