The Glacier and Ice Surface Topography Interferometer: UAVSAR's Single-pass Ka-Band Interferometer
Abstract
In May 2009 a new radar technique for mapping ice surface topography was demonstrated in a Greenland campaign as part of the NASA International Polar Year (IPY) activities. This was achieved with the airborne Glacier and Ice Surface Topography Interferometer (GLISTIN-A): a 35.6 GHz single-pass interferometer. The proof-of-concept demonstration was achieved by interfacing Ka-band RF and antenna hardware with the Uninhabited Airborne Vehicle Synthetic Aperture Radar (UAVSAR). The GLISTIN-A was implemented as a custom installation of the NASA Dryden Flight Research Center Gulfstream III. Instrument performance indicated swath widths over the ice between 5-7km, with height precisions ranging from 30cm-3m at a posting of 3m x 3m. Following the success of the IPY campaign, the Earth Science Techonology Office (ESTO) Airborne Innovative Technology Transition (AITT) program funded the upgrade of GLISTIN-A to a permanently-available pod-only system compatible with unpressurized operation. The AITT made three fundamental upgrades to improve system performance: 1. State-of-the-art solid-state power amplifiers (80W peak) were integrated directly on the antenna panel reducing front-end losses; 2. A ping-pong capability was incorporated to effectively double the baseline thereby improving height measurement precision by a factor of two; and 3. A high-fidelity calibration loop was implemented which is critical for routine processing. Upon completion of our engineering flights in February 2013, GLISTIN-A flew a brief campaign to Alaska (4/24-4/27/13). The purpose was to fully demonstrate GLISTIN-A's ability to generate high-precision, high resolution maps of ice surface topography with swaths in excess of 10km. Furthermore, the question of the utility of GLISTIN-A for sea-ice mapping, tracking and inventory has received a great deal of interest. To address this GLISTIN-A collected data over sea-ice in the Beaufort sea including an underflight of CryoSAT II. Note that there are ongoing activities to stage GLISTIN on the Global Hawk (GLISTIN-H) for which sea ice-mapping is a primary driver. Analysis of the data will focus on assessment of performance and interpretation over ice to include: 1. intercomparison of GLISTIN-A glacier height maps with lidar data and heritage SRTM DEM's for performance validation of GLISTIN-A over ice, 2. quantitative evaluation of mass change over the Columbia glacier via repeat observations made by GLISTIN-A with a 3 day separation, 3. assessment of GLISTIN-A's ability map sea ice extent, dynamics and possibly to measure freeboard.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.C21D0648M
- Keywords:
-
- 0720 CRYOSPHERE Glaciers;
- 0794 CRYOSPHERE Instruments and techniques;
- 0758 CRYOSPHERE Remote sensing