Comparison of annual accumulation rates derived from in situ and ground penetrating radar methods across Alaskan glaciers
Abstract
Constraining annual snowfall accumulation in mountain glacier environments is essential for determining the annual mass balance of individual glaciers and predicting seasonal meltwater runoff to river and marine ecosystems. However, large spatial and elevation gradients, coupled with sparse point measurements preclude accurate quantification of this variable using traditional methods. Here, we report on an extensive field campaign conducted in March-May 2013 on key benchmark glaciers in Alaska, including Taku Glacier near Juneau, Scott Glacier near Cordova, both Eklutna and Wolverine Glacier near Anchorage and Gulkana Glacier in the interior Alaska Range. Over 50 km of 500 MHz common-offset ground penetrating radar (GPR) surveys were collected on each glacier, with an emphasis on capturing spatial variability in the accumulation zone. Frequent in situ observations were collected for comparison with the GPR, including probe depths, snow pits and shallow firn cores (~8 m). We report on spatial and elevation gradients across this suite of glaciers and across numerous climatic zones and discuss differences between GPR and in situ derived annual accumulation estimates. This comparison is an essential first step in order to effectively evaluate regional atmospheric re-analysis products.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.C21B0633M
- Keywords:
-
- 0720 CRYOSPHERE Glaciers;
- 0762 CRYOSPHERE Mass balance 0764 Energy balance