Temporal Variation in Water Quality Parameters under Different Vegetative Communities in Two Flooded Forests of the Northern Pantanal, Mato Grosso, Brazil
Abstract
The Pantanal is one of the largest flood plains in the world, and is characterized by large variability in vegetative communities and flooding dynamics. Some woody plant species have been observed to colonize large areas forming monospecific stands. We measured chemical parameters of flood waters including dissolved organic carbon (DOC), nitrate (NO3), dissolved oxygen (DO), and carbon dioxide (CO2) as well as physical parameters such as photosynthetically active radiation (PAR), temperature (Tw), turbidity (Turb) and water levels (WL). These chemical and physical measurements were conducted with the intent to characterize spatial and temporal differences of monospecific stands in order to understand if these different formations alter the biogeochemistry of the Pantanal waters. Water sample campaigns were conducted during the inundation period of January to May 2013 in two areas located in the Private Reserve of the Brazilian Social Service of Commerce (RPPN-SESC) near Poconé, Mato Grosso. Research sites included: (1) a flooded tall-stature forest (known as Cambarazal) dominated by the Vochysia divergens species; and (2) in a flooded scrub forest (known as Baia das Pedras) dominated by the Combretum lanceolatum species. Results showed three principal factors which explained 80% of variance in aquatic physical and chemical parameters. The first factor (PCA-1) explained 38% of variance (DO, PAR and WL), PCA-2 explained 23% (NO3, Tw, DOC), while PCA-3 explained only 19% of variance (CO2 and Turb). During the entire study period, the major concentration of variables were observed in the flooded forest. Physical variables presented small alterations, with the exception of water levels, that were greater in the flooded forest. With respect to temporal variables, all chemical parameters were greater at the beginning of the inundation and gradually dropped with the water level. With this work, we observed that the different monospecific formations influenced water quality which could further explain the functioning of this complex hydrochemical environment as well as the carbon balance in tropical Brazilian floodplains.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.B53B0455C
- Keywords:
-
- 0404 BIOGEOSCIENCES Anoxic and hypoxic environments;
- 0458 BIOGEOSCIENCES Limnology;
- 0497 BIOGEOSCIENCES Wetlands;
- 0496 BIOGEOSCIENCES Water quality