Offshore permafrost decay and massive seabed methane escape in water depths >20 m at the South Kara Sea shelf
Abstract
We study the West-Yamal Shelf in the Kara Sea, offshore Western Russia. We present new high-resolution seismic data (2-16 kHz) and gas geochemical data from 2012 cruises. In high-resolution seismic data, we found extensive acoustic anomalies in the water column, which we interpreted to be gas (bubble) flares rising from the seafloor. These anomalies were widespread throughout the study area, but seemed to be limited to water depths > 20 meters below sea level (mbsl). One seepage site in ~6m water depth released gas that reached almost to the sea surface. The hydroacoustic anomalies are limited by the 20 m isobaths, and it may be controlled by the extension of permafrost that is still present below the seafloor at these depths providing an impermeable layer through which gas and other fluids cannot migrate. We detected acoustically transparent zones in sediments in the upper 2-5 meters below seafloor (mbsf). We interpret these acoustic anomalies to record the presence of free gas. Deeper seismic data show that acoustic anomalies in sediments near the seafloor are connected to gas chimneys that extend to depths >2000 mbsf. This suggests that gas is migrating from deeper hydrocarbon reservoirs and therefore it has very likely a thermogenic origin. In addition to the more widespread and disperse acoustically transparent zones, we discovered two prominent transparent mounds that are 1.5-2 km in diameter and that are elevated 10-15 meters above the seafloor. These features bear striking resemblance to the pingo-like features (PLF) that have been studied on the Beaufort Shelf (e.g. Shearer et al., 1971; Paull et al., 2007), and Pechora Sea (Rokos, 2009). Tentative results of numerical modelling estimate the thickness of permafrost, which was during the last sea level regression 170-300 meters thick. Based on the model of permafrost melting we state, that continuous sub-seabed permafrost may extend to water depths of ~20 m offshore creating a seal through which gas cannot migrate. Discontinuous and local permafrost areas may exist further offshore in up to 115 m water depth. This study provides one of the key examples of an Arctic marine shelf where seafloor gas release is widespread and where permafrost degradation is an ongoing process. These initial results provided targets for drilling and data acquisition in the summer of 2013 and for future research cruises in the Kara Sea. A better understanding of hydrocarbon seepage at the seafloor is important for assessing both the natural release of gas to the atmosphere and the hydrocarbon potential for new exploration regions like the Kara Sea.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.B33K0604P
- Keywords:
-
- 0475 BIOGEOSCIENCES Permafrost;
- cryosphere;
- and high-latitude processes