Effects of Nitrogen Fertilizer and Harvesting Frequency on Soil Organic Matter Pools Under Switchgrass Agriculture
Abstract
Intensive agriculture has the potential to reduce soil carbon stocks in the years following initial cultivation, although the magnitude and direction of the effect can vary with ecosystem and management factors. The cropping of switchgrass (Panicum virgatum) for biomass shows potential for high yields in marginal lands with low fertilizer inputs, while the extensive root system can act to improve soil quality and sequester atmospheric carbon dioxide in the soil carbon pool. We are investigating the impact of nitrogen fertilizer inputs and harvesting frequency on soil organic matter quantity and quality in a biofuels cropping trial in Michigan. Here we test the hypothesis that harvest and fertilization rate can affect the partitioning of organic matter into different storage pools within the 0-60 cm of soil: roots, particulate organic matter (POM) (density <1.8 g/cm3), and protected organic matter (density > 1.8 g/cm3). Additionally, we use 13C Nuclear Magnetic Resonance (NMR) spectroscopy to study the bulk chemistry (carbohydrate, lignin, lipid, and protein) of the roots and POM. The NMR data also allow us to estimate the relative decomposition of the soil organic matter using a standard decomposition index (alkyl/O-alkyl peak ratio). We use the data to infer the influence of crop management on the mechanisms of soil C storage and mechanisms of stabilization in switchgrass agriculture. Initial results have shown a significant change in carbon stocks at depths between 15-60 cm for the high and low fertilization rates, 196 kg/m3 and 0kg/m3 respectively, although the harvesting time and frequency did not create a substantial difference on carbon stocks. The root bulk chemistry has not shown consistent results among management practices
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.B31C0416V
- Keywords:
-
- 0428 BIOGEOSCIENCES Carbon cycling