A Linear Systems Approach to Segmented Watershed Contaminant Transport
Abstract
The U.S. Environmental Protection Agency (USEPA) employs simulation models to estimate concentrations of pesticide residues in surface waters for risk assessment. These models have historically been used to simulate runoff loadings from homogeneous landscapes to isolated, well-mixed lentic systems that generically represent vulnerable waters. Recent efforts to refine this approach in terms of realism and geographic specificity have focused on enhancing the level of detail of the landscape representation, rather than that of receiving water hydrology. Linear systems theory and transfer function based approaches have been applied by various investigators to the representation of contaminant leaching through soils, and to surface water hydrology (e.g., unit hydrographs), but rarely to contaminant transport either within surface waters, or through multi-compartment systems such as stream networks. This poster describes a straightforward approach to simulating watersheds as segmented into collections of linked water bodies. The approach employs convolution integrals, impulse response functions, and the Discrete Fourier Transform to propagate concentration time series from upstream to downstream locations. Given knowledge only of estimated mean stream residence times, with appropriately-scaled segmentations of catchments, realistic representations of concentration dynamics are shown to be achievable. These representations are based upon high-frequency atrazine monitoring data sets collected over common time periods from upstream and downstream locations within the same small watersheds. Simulated concentrations are shown to match measured concentrations well in both the temporal and spectral domains without the need for calibration, and despite inherent simplifying assumptions such as steady flow. The approach may have utility for enhancing surface water hydrologic representation in contaminant modeling used for regulatory purposes.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.B13F0569C
- Keywords:
-
- 0496 BIOGEOSCIENCES Water quality;
- 1813 HYDROLOGY Eco-hydrology;
- 1847 HYDROLOGY Modeling;
- 1872 HYDROLOGY Time series analysis