Piezophilic Bacteria Isolated from Sediment of the Shimokita Coalbed, Japan
Abstract
The Earth is a cold planet as well as pressured planet, hosting both the surface biosphere and the deep biosphere. Pressure ranges over four-orders of magnitude in the surface biosphere and probably more in the deep biosphere. Pressure is an important thermodynamic property of the deep biosphere that affects microbial physiology and biochemistry. Bacteria that require high-pressure conditions for optimal growth are called piezophilic bacteria. Subseafloor marine sediments are one of the most extensive microbial habitats on Earth. Marine sediments cover more than two-thirds of the Earth's surface, and represent a major part of the deep biosphere. Owing to its vast size and intimate connection with the surface biosphere, particularly the oceans, the deep biosphere has enormous potential for influencing global-scale biogeochemical processes, including energy, climate, carbon and nutrient cycles. Therefore, studying piezophilic bacteria of the deep biosphere has important implications in increasing our understanding of global biogeochemical cycles, the interactions between the biosphere and the geosphere, and the evolution of life. Sediment samples were obtained during IODP Expedition 337, from 1498 meters below sea floor (mbsf) (Sample 6R-3), 1951~1999 mbsf (19R-1~25R-3; coalbed mix), and 2406 mbsf (29R-7). The samples were mixed with MB2216 growth medium and cultivated under anaerobic conditions at 35 MPa (megapascal) pressure. Growth temperatures were adjusted to in situ environmental conditions, 35°C for 6R-3, 45°C for 19R-1~25R-3, and 55°C for 29R-7. The cultivation was performed three times, for 30 days each time. Microbial cells were obtained and the total DNA was extracted. At the same time, isolation of microbes was also performed under anaerobic conditions. Microbial communities in the coalbed sediment were analyzed by cloning, sequencing, and terminal restriction fragment length polymorphism (t-RFLP) of 16S ribosomal RNA genes. From the partial 16S rRNA gene sequences, we have identified abundant Alkalibacterium sp. in 6R-3 and 29R-7 at the first HP cultivation. We also identified Haloactibacillus sp. in 6R-3 and Anoxybacillus related sp. in 19R-1~25R-3 at the third HP cultivation. These microorganisms are likely piezophiles and play an important role in degradation of sedimentary organic matter and production of microbial metabolites sustaining the deep microbial ecosystem in the Shimokita Coalbed. The complete 16S sequencing and isolation of piezophiles are now ongoing.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.B13C0497F
- Keywords:
-
- 0448 BIOGEOSCIENCES Geomicrobiology;
- 0465 BIOGEOSCIENCES Microbiology: ecology;
- physiology and genomics;
- 0428 BIOGEOSCIENCES Carbon cycling;
- 0456 BIOGEOSCIENCES Life in extreme environments