Metabolic activity of subseafloor microbes in the South Pacific Gyre
Abstract
The South Pacific Gyre (SPG) is characterized as the most oligotrophic open ocean environment. The sediment is rich in oxygen but poor in energy-sources such as reduced organic matter, and hence harbors very low numbers of microbial cells in relatively shallow subseafloor sediment (D'Hondt et al., 2009; Kallmeyer et al., 2012). In such an energy-limited sedimentary habitat, a small size of microbial community persists living functions with extraordinary low oxygen-consumption rate (Røy et al., 2012). During IODP Expedition 329, a series of sediment samples were successfully recovered from 7 drill sites (U1365-1371) from the seafloor to basement in the SPG, providing an unprecedented opportunity to study metabolic activity of the aerobic subseafloor microbial communities. We initiated incubation onboard by adding stable isotope-labeled substrates to the freshly collected sediment sample, such as 13C and/or 15N-labeled bicarbonate, glucose, amino acids, acetate, and ammonium under the (micro-) aerobic condition. One of the technological challenges in this study is to harvest microbial cells from very low-biomass sediment samples for the analysis using nano-scale secondary ion mass spectrometry (NanoSIMS). To address the technical issue, we improved existing cell separation technique for the SPG sediment samples with small inorganic zeolitic grains. By monitoring cell recovery rates through an image-based cell enumeration technique (Morono et al., 2009), we found that cell recovery rates in the SPG sediment samples are generally lower than those in other oceanographic settings (i.e., organic-rich ocean margin sediments). To gain higher cell recovery ratio, we applied multiple density gradient layers, resulting in the cell recovery ratio up to around 80-95% (Morono et al., in press). Then, using the newly developed cell separation technique, we successfully sorted enough number of microbial cells in small spots on the membrane (i.e., 103 to 105 cells per spot). NanoSIMS analysis showed incorporation of the supplemented stable isotope-labeled substrates after 1.5 year-incubation. The substrate incorporation rates of individual microbial cell ranged in average from 1/10 to 1/2 of those values previously observed in an organic-rich ocean margin sediment (Morono et al., 2011). References S. D'Hondt et al., Subseafloor sedimentary life in the South Pacific Gyre. Proc Natl Acad Sci USA 106, 11651 (2009) J. Kallmeyeret al., Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl Acad Sci USA 109, 16213 (2012) H. Røy et al., Aerobic microbial respiration in 86-million-year-old deep-sea red clay. Science 336, 922 (2012) Y. Morono et al. Discriminative detection and enumeration of microbial life in marine subsurface sediments. ISME J 3, 503 (2009) Y. Morono et al., An Improved Cell Separation Technique for Marine Subsurface Sediments: Applications for High-throughput Analysis Using Flow Cytometry and Cell Sorting. Environ Microbiol, (2013) Y. Morono et al., Carbon and nitrogen assimilation in deep subseafloor microbial cells. Proc Natl Acad Sci USA 108, 18295 (2011)
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.B13C0481M
- Keywords:
-
- 0456 BIOGEOSCIENCES Life in extreme environments;
- 0448 BIOGEOSCIENCES Geomicrobiology