The Kinetic Behavior of Benzaldehyde under Hydrothermal Conditions
Abstract
Aldehydes represent an intermediate redox state between alcohols and carboxylic acids and are likely intermediates in the transformation of organic compounds in natural systems. We have conducted kinetic studies of a model aldehyde, benzaldehyde, in high-temperature water (250-350 °C, saturation pressure) in clear fused quartz (CFQ) autoclaves. Under these conditions, benzaldehyde is observed to undergo a disproportionation reaction to benzyl alcohol and benzoic acid reminiscent of the base-catalyzed Cannizzaro reaction known to occur at cooler temperatures. Benzene is also produced via decarbonylation of the aldehyde. We have obtained pseudo second-order rate constants for the decomposition of benzaldehyde at 250, 300, and 350 °C. Rates derived via repeated heating phases and subsequent quantitative 13C-NMR spectroscopy of a single NMR-compatible CFQ tube containing isotopically labeled benzaldehyde are consistent with those obtained by analysis of product suites from individual timed experiments via gas chromatography. Arrhenius parameters for these rate constants are consistent with published values for the reaction under supercritical conditions from one study (Tsao et al. 1992) yet the pre-exponential factor is approximately 7 orders of magnitude smaller than that derived from another study (Ikushima et al. 2001). Moreover, fitting our rate constants with the Eyring equation yields an entropy of activation (ΔS‡) of -26.6 kcal mol-1 K-1, which is consistent for a bimolecular transition state at the rate-limiting step. In contrast, the rates of Ikushima et al. yield a positive value of ΔS‡, which is inconsistent with the putative mechanism for the reaction. The linear Arrhenius behavior of the decomposition of benzaldehyde from high-temperature liquid to supercritical conditions demonstrates the potential for extrapolating experimentally derived rates of reactions for organic functional group transformations to conditions where diagenesis, alteration, metamorphism, and other hydrothermal processes of interest occur in natural systems. References Ikushima, Y., K. Hatakeda, O. Sato, T. Yokoyama, and M. Arai. 2001. Structure and base catalysis of supercritical water in the noncatalytic benzaldehyde disproportionation using water at high temperatures and pressures. Angewandte Chemie, 40, 210-213. Tsao, C.C., Y. Zhou, X. Liu, and T.J. Houser. 1992. Reactions of supercritical water with benzaldehyde, benzylidenebenzylamine, benzyl alcohol, and benzoic acid. The Journal of Supercritical Fluids, 5, 107-113.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.B13B0471F
- Keywords:
-
- 1055 GEOCHEMISTRY Organic and biogenic geochemistry;
- 3616 MINERALOGY AND PETROLOGY Hydrothermal systems;
- 3612 MINERALOGY AND PETROLOGY Reactions and phase equilibria;
- 0428 BIOGEOSCIENCES Carbon cycling