Acid-Catalyzed Reaction of Epoxides on Atmospheric Nanoparticles
Abstract
Aerosol plays an important role in affecting the earth climate and harming human health. Atmospheric aerosols can be formed from either primary emissions or gas-to-particle conversion process. Numerous studies, including both experimental and theoretical, have been carried out to elucidate the mechanism of gas-to-particle conversion process (a.k.a. nucleation) and the later growth stage of newly formed nanoparticles. However, a complete list of species involving in the nucleation and growth processes of nanoparticles is still poorly understood. The growth of newly formed sulfuric acid - water nanoparticles has been suggested to involve several potential organic vapors, such as amines, glyoxal, 2-4 hexadienal, and epoxides. In the present study, new formed sulfuric acid -water nanoparticles were size selected by a differential mobility analyzer and exposed to epoxide vapors. The size-change after exposure was detected using the second differential mobility analyzer. The size-enlarged particles were then collected by an electrostatic precipitator, thermal vaporized, and analyzed by an ion drift chemical ionization mass spectrometer. Our results show that the sizes of nanoparticles are increased considerably and the magnitude of the increment in size is size-dependent. Mass spectrometry analysis of the nanoparticles after exposure demonstrates that low volatile organosulfate and oligomers are formed in nanoparticles upon their exposure to epoxide vapors.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.A53F0233X
- Keywords:
-
- 0305 ATMOSPHERIC COMPOSITION AND STRUCTURE Aerosols and particles