A New Wet Deposition Module in SILAM Chemical Transport Model
Abstract
The System for Integrated modeLling of Atmopsheric coMposition SILAM (http://silam.fmi.fi/) is a CTM model of FMI air-quality research unit. SILAM is used for research, operational and emergency-response assessments and forecasting of the atmospheric composition within the scope of European and Finnish national projects. Characteristic scales of the SILAM applications vary from -mesoscale (grid spacing 1 km) up to the globe with characteristic resolution of 1 degree. Till recently, a simple approach based on scavenging coefficients and their species-dependent scaling was used in SILAM. Due to the lack of information on the vertical structure of precipitation in older meteorological datasets, it was prescribed. The new scheme uses a mechanistic description of the scavenging process and utilizes the vertical profiles of cloud water content. A simple model for dissociation of H2SO3 accounts for saturation of SO2 scavenging. As the vertical profiles of precipitation rates are rarely available from meteorological models, they are reconstructed from the profiles of cloud water and surface precipitation fields. The rain/snow increment in a 3D model grid cell is taken as a fraction of surface precipitation intensity equal to the cell's fraction of total cloud water column. The phase of precipitation (liquid/solid) is a function of air temperature. The fall speed is derived from the size of water drops given by a function of rain/snow intensity. In-cloud scavenging is considered as an equilibrium process: . the concentrations in cloud water are assumed to be in equilibrium with ambient air. The sub-cloud scavenging is driven by the precipitation that comes from above the cell. The scavenging by a single droplet is considered as a two-way equilibration process of in-water and in-air concentrations, controlled by the hydrometeors size, cross-section and a time the droplet falls through a cell, effective solubility and amount of already dissolved pollutant. The solubility for most species is given by their effective Henry factors as functions of temperature. An exception is SO2 since the in-water amount of [S(IV)] is not a linear function of SO2 partial pressure in the air. The effective Henry factor for SO2 is then calculated from a dissociation equation after all other species in a cell are processed and their in-water concentrations are known. The new scheme results in substantially more realistic vertical patterns for scavenging. The consideration of equilibration rather than one-way scavenging allows modelling the vertical redistribution of pollutants by precipitation. The scheme provides a simple and well-grounded means to account for saturation of scavenging for SO2.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.A51G0117K
- Keywords:
-
- 0345 ATMOSPHERIC COMPOSITION AND STRUCTURE Pollution: urban and regional;
- 0305 ATMOSPHERIC COMPOSITION AND STRUCTURE Aerosols and particles;
- 0365 ATMOSPHERIC COMPOSITION AND STRUCTURE Troposphere: composition and chemistry