Oligomer Formation Reactions of Criegee Intermediates in the Ozonolysis of Small Unsaturated Hydrocarbons
Abstract
Secondary organic aerosol (SOA) constitutes a substantial fraction of atmospheric fine particulate matters and has an effect on visibility, climate and human health. One of the major oxidizing processes leading to SOA formation is an ozonolysis of unsaturated hydrocarbons (UHCs).[1] Despite of its importance, the contribution of the ozonolysis of UHCs to the SOA formation in the troposphere is not sufficiently understood due to a lack of information on reaction pathways to produce low volatile compounds. While many studies have previously been focused on SOA formation from the ozonolysis of large UHCs, SOA formation from the ozonolysis of UHCs with less than six carbon atoms have been rarely investigated because their products are expected to be too volatile to contribute to the SOA formation. Very recently, a few studies have reported the SOA formation from the ozonolysis of such small UHCs but chemical mechanisms are still unclear. [2-4] In order to understand SOA formation from the ozonolysis of the small UHCs, this study investigated gas- and particle-phase products in laboratory experiments with a Teflon bag using a negative ion chemical ionization mass spectrometry (NI-CIMS) with chloride ion transfer for chemical ionization. This technique is suitable for analysis of compounds such as carboxylic acids and hydroperoxides expected to be produced in the ozonolysis of UHCs with less fragmentation, high selectivity, and high sensitivity. In the particle-phase analysis, SOAs collected on a PTFE filter were heated, and thermally desorbed compounds were analyzed. In the gas-phase analysis, series of peaks with an interval of a mass-to-charge ratio equal to the molecular weight of a Criegee intermediate formed in their ozonolysis were observed. These peaks were attributed to oligomeric hydroperoxides composed of Criegee intermediates as a chain unit. These oligomeric hydroperoxides were also observed in the particle-phase analysis, indicating that the oligomeric hydroperoxides of low volatility formed in the gas phase are partitioned into the particle phase to contribute to the SOA formation. Here, we propose a new oligomer formation mechanism including sequential addition of Criegee intermediates to hydroperoxides. REFERENCE: (1)Kroll, J. H.; Seinfeld, J. H. Chemistry of Secondary Organic Aerosol: Formation and Evolution of Low-Volatility Organics in the Atmosphere. Atmos. Environ. 2008, 42, 3593-3624. (2)Sadezky, A.; Chaimbault, P.; Mellouki, A.; Roempp, A.; Winterhalter, R.; Le Bras, G.; Moortgat, G. K. Formation of Secondary Organic Aerosol and Oligomers from the Ozonolysis of Enol Ethers. Atmos. Chem. Phys. 2006, 6, 5009-5024. (3)Sadezky, A.; Winterhalter, R.; Kanawati, B.; Roempp, A.; Spengler, B.; Mellouki, A.; Le Bras, G.; Chaimbault, P.; Moortgat, G. K. Oligomer Formation during Gas-Phase Ozonolysis of Small Alkenes and Enol Ethers: New Evidence for the Central Role of the Criegee Intermediate as Oligomer Chain Unit. Atmos. Chem. Phys. 2008, 8, 2667-2699. (4)Klotz, B.; Barnes, I.; Imamura, T. Product Study of the Gas-Phase Reactions of O3, OH and NO3 Radicals with Methyl Vinyl Ether. Phys. Chem. Chem. Phys. 2004, 6, 1725-1734.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.A51D0045S
- Keywords:
-
- 0305 ATMOSPHERIC COMPOSITION AND STRUCTURE Aerosols and particles;
- 0365 ATMOSPHERIC COMPOSITION AND STRUCTURE Troposphere: composition and chemistry