Convection Fingerprints on the Vertical Profiles of Q1 and Q2
Abstract
Different types of tropical convection left their fingerprints on vertical structures of apparent heat source (Q1) and apparent moisture sink (Q2). Profile of deep convection on condensation heating and drying has been well-documented, yet direct assessment of shallow convection remains to be explored. Shallow convection prevails over subtropical ocean, where large-scale subsidence is primarily balanced by radiative cooling and moistening due to surface evaporation instead of moist convection. In this study a united framework is designed to investigate the vertical structures of tropical marine convections in three reanalysis data, including ERA-Interim, MERRA, and CFSR. It starts by sorting and binning data from the lightest to the heaviest rain. Then the differences between two neighboring bins are used to examine the direct effects for precipitation change, in light of the fact that non-convective processes would change slowly from bin to bin. It is shown that all three reanalyses reveal the shallow convective processes in light rain bins, featured by re-evaporating and detraining at the top of boundary layer and lower free troposphere. For heavy rain bins, three reanalyses mainly differ in their numbers and altitudes of heating and drying peaks, implying no universal agreement has been reached on partitioning of cloud populations. Coherent variations in temperature, moisture, and vertical motion are also discussed. This approach permits a systematical survey and comparison of tropical convection in GCM-type models, and preliminary studies of three reanalyses suggest certain degree of inconsistency in simulated convective feedback to large-scale heat and moisture budgets.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.A51B0022C
- Keywords:
-
- 3371 ATMOSPHERIC PROCESSES Tropical convection;
- 3314 ATMOSPHERIC PROCESSES Convective processes;
- 3354 ATMOSPHERIC PROCESSES Precipitation