The Co-benefits of Domestic and Foreign GHG Mitigation on US Air Quality
Abstract
Authors: Yuqiang Zhang1, Jared Bowden2 , Zachariah Adelman1,2, Vaishali Naik3, Larry W. Horowitz4 , J. Jason West1 1 University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 2 Institute for the Environment, Chapel Hill, NC 27599 3 UCAR/NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ 08540 4 NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ 08540 Abstract: Actions to mitigate greenhouse gas (GHG) emissions will reduce co-emitted air pollutants, which can immediately affect air quality; slowing climate change through GHG mitigation also influences air quality in the long term. We previously used a global model (MOZART-4) to show that global GHG mitigation will have significant co-benefits for air quality and human health. In doing so, we contrasted the Representative Concentration Pathway Scenario 4.5 (RCP4.5), treated as a GHG mitigation scenario, with its associated reference case scenario (REF). Using these same scenarios, we investigate here the air quality co-benefits due to domestic GHGs mitigation in the US alone at fine resolution, and compare these co-benefits with those resulting from foreign GHG mitigation. This work focuses on downscaling the meteorology and air pollutant chemistry to the US scale. We use the latest Weather Research and Forecasting (WRF) model as a Regional Climate Model (RCM) to dynamically downscale the GFDL AM3 Global Climate Model (GCM) over the US at 36 km resolution, in 2000 and 2050. The 2000 simulation will be compared with the multi-year surface observation data, satellite data, and all simulations with the GCM simulation. These simulations will be used as inputs for the newest Community Multiscale Air Quality (CMAQ) modeling system. Initial conditions (IC) and dynamic boundary conditions (BC) for CMAQ will be derived from the global MOZART-4 simulations. Anthropogenic emissions for the REF and RCP4.5 scenarios will be processed through SMOKE to prepare temporally- and spatially-resolved emission files. We will evaluate the co-benefits of GHG mitigation by changing the meteorological and air pollutant emissions inputs for RCP4.5 and REF, as well as the fixed methane level, and will separate the co-benefits of domestic vs. foreign GHG mitigation by using RCP4.5 emissions in the US only, but REF boundary conditions and REF emissions elsewhere.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.A41H0183Z
- Keywords:
-
- 0345 ATMOSPHERIC COMPOSITION AND STRUCTURE Pollution: urban and regional;
- 0315 ATMOSPHERIC COMPOSITION AND STRUCTURE Biosphere/atmosphere interactions;
- 0305 ATMOSPHERIC COMPOSITION AND STRUCTURE Aerosols and particles;
- 1637 GLOBAL CHANGE Regional climate change