Methane Emissions from Upland Trees
Abstract
Most work on methane (CH4) emissions from natural ecosystems has focused on wetlands and wetland soils because they are predictable emitters and relatively simple to quantify. Less attention has been directed toward upland ecosystems that cover far larger areas, but are assumed to be too dry to emit CH4. There is abundant evidence that upland ecosystems emit small amounts of CH4 during hot moments that collectively constitute a significant source in the global budget of this potent greenhouse gas. We have established two transects across natural moisture gradients in two forests near Annapolis, Maryland. Both tree and soil methane fluxes were measured using chamber methods. Each tree chamber was custom fit to the stem near the base. In addition, porewater methane concentrations were collected at multiple depths near trees. Abiotic parameters such as soil temperature, soil moisture, water potential, and depth to groundwater were monitored using a wireless sensor network. Upland emissions from tree stems were as high as 14.6 umoles CH4 m-2 hr-1 while the soil uptake was -1.5 umoles CH4 m-2 hr-1. These results demonstrate that tree methane emissions and soil methane uptake can occur simultaneously in a mesic forest. Factors controlling methane emissions were soil temperature, soil moisture, and depth to groundwater. Based on our preliminary data, tree mediated methane emissions may be offsetting the soil methane sink of upland forests by 20 to 30%. Future methane budgets and climate models will need to include tree fluxes and the parameters that control methane emissions for accurate accounting and predictions.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.A23D0277P
- Keywords:
-
- 0490 BIOGEOSCIENCES Trace gases;
- 0428 BIOGEOSCIENCES Carbon cycling;
- 0315 ATMOSPHERIC COMPOSITION AND STRUCTURE Biosphere/atmosphere interactions;
- 0414 BIOGEOSCIENCES Biogeochemical cycles;
- processes;
- and modeling