Detrainment and aerosol redistribution in shallow convective clouds (Invited)
Abstract
Vertical transport associated with cumulus clouds is important to the redistribution of aerosol particles, gases and energy, with subsequent consequences for many aspects of the climate system. Previous studies have suggested that detrainment from clouds can be comparable to the updraft mass flux, and thus contribute to vertical transport. In this study, we describe a new method to deduce the amounts of gross detrainment and entrainment experienced by non-precipitating cumulus clouds using aircraft observations. The method is applied to aircraft observations from the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) which took place in the Houston, Texas region during which 176 small, non-precipitating cumulus were sampled. Our analysis suggests that, on average, these clouds were comprised of 30 to 70% mixed-layer air, with entrained air comprising most of the remainder. The mass fraction of detrained air was less than 2% for a majority of the clouds, although 15% of them did exhibit detrained air fractions larger than 10%. Entrained and detrained air mass fractions both increased with altitude, and the largest detrainment events were almost all associated with air that was at their level of neutral buoyancy, findings that are all consistent with previous studies. To address aerosol redistribution more specifically, aerosol size distributions on clear and cloudy days are compared, with substantial enhancements at higher altitudes found for cloudy days due to a combination of vertical transport and in situ sulfate and organic chemistry.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.A23C0244C
- Keywords:
-
- 0320 ATMOSPHERIC COMPOSITION AND STRUCTURE Cloud physics and chemistry;
- 0305 ATMOSPHERIC COMPOSITION AND STRUCTURE Aerosols and particles;
- 0368 ATMOSPHERIC COMPOSITION AND STRUCTURE Troposphere: constituent transport and chemistry