Possible indicators of long-range transport for aerosol emitted from various source regions in Northeast Asia
Abstract
Air pollutant is affected by both long-range transboundary processes and local air pollution emission. Therefore it is important to identify the origin of air pollutant, for example, by classifying air pollutants into long-range transport (LRT) dominant process and local emission dominant (LED) cases. This study proposed several chemical and physical indicators of LRT process of aerosol concentrations observed at Korean peninsula. In order to identify the source regions and to estimate the contributions of both LRT and LED, we performed Lagrangian particle dispersion model(FLEXPART) and selected high pollution days over the three source regions in China inland and one Korea peninsula defined in this study; LRT-I to III and LED case. Next, we investigated the chemical and physical characteristics of LRT process of aerosol, and contrasted to those in the LED case over the Northeast Asia. We examined the difference of both modeled features simulated by CMAQ and as well measured aerosol optical properties of satellite-based sensor MODIS and AERONET data. Modeling study showed that the most effective indicator is the sulfur conversion ratios such as SO42-/(SO2+ SO42-) and SO42-/ SO2 for high sulfate condition. The ratio of N-containing species such as NOx (or NOy) to CO were the next best alternative indicators. In the meteorological fields, the results showed that pressure pattern and streamline flow are similar on a case by case basis. For observational physical features, we obtained the spatial distributions of the mean AOD, fine mode fraction (FMF), angstrom exponent (AE) by taking the average of MODIS aerosol products for the each analysis period. The highest AOD was found over the industrialized coastal region regardless of cases. AERONET data showed that aerosol size distribution showed significantly higher concentration of fine-mode particle in LED cases in comparison with that of LRT groups, suggesting that the amplitude fine modes of LRT relative to LED could be a possible LRT indicator. We expressed the ratio of both fine- and coarse-mode amplitudes according to the various source regions for LRT and LED process at receptor of Korean peninsula. Other characteristics of simulated and observational features of physical properties were also discussed here.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.A21C0055P
- Keywords:
-
- 0300 ATMOSPHERIC COMPOSITION AND STRUCTURE;
- 0305 ATMOSPHERIC COMPOSITION AND STRUCTURE Aerosols and particles;
- 0345 ATMOSPHERIC COMPOSITION AND STRUCTURE Pollution: urban and regional