Long-term trends and weekday-to-weekend differences in ozone, its precursors, and other secondary pollutants in Atlanta, Georgia
Abstract
In an environment rich in biogenic volatile organic compounds (VOCs), decreasing concentrations of ozone (-1.3 % yr-1) and other secondary pollutants (-8.2 % yr-1 for nitric acid, HNO3; and -7.9 % yr-1 for peroxyacetyl nitrate, PAN) in Atlanta, Georgia over the past fifteen years are primarily attributed to decreases in local emissions of nitrogen oxides (NOx=NO+NO2). Large reductions in abundances of NOx in the Southeast U.S. over the years (-8.0 % yr-1 for total reactive nitrogen, NOy) are the direct result of control strategies implemented to reduced emissions from electric-power generation plants and on-road motor vehicles. Here, we compile an extensive historical data set of trace gas measurements spanning fifteen years between 1998 and 2013 from a surface monitoring network site in downtown Atlanta (i.e. the SEARCH network Jefferson Street site) and research aircraft (e.g. the 2013 Southeast Atmosphere Study and 1999 Southern Oxidants Study aboard the NOAA P-3 aircraft). With this data set we confirm and extend long-term trends and weekday-to-weekend differences in ozone, its precursors, and other secondary pollutants during summertime in Atlanta. Long-term changes in abundances and enhancement ratios of secondary oxidation products indicate changes in pollutant formation chemistry in Atlanta resulting from the significant decrease in NOx precursor emissions over the past fifteen years. The most noteworthy changes include: 1) an increase in enhancement ratios of odd oxygen (Ox=O3+NO2) to (PAN+HNO3) of +5.5 % yr-1 indicating an increase in ozone production efficiency by a factor of 2 over the fifteen year period, 2) no significant change in the fraction of oxidized NOx out of NOy over time indicating little change in the extent of photochemical processing of the NOx emissions, and 3) a flip in observed ozone concentrations from higher average ozone on weekends to higher average ozone on weekdays after 2004. The observations for Atlanta will also be contrasted with results from a similar analysis of California's Los Angeles air basin, a region with considerably different precursor abundances and emissions, control strategies, transport, and meteorology.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.A13A0156P
- Keywords:
-
- 0365 ATMOSPHERIC COMPOSITION AND STRUCTURE Troposphere: composition and chemistry;
- 0345 ATMOSPHERIC COMPOSITION AND STRUCTURE Pollution: urban and regional;
- 0368 ATMOSPHERIC COMPOSITION AND STRUCTURE Troposphere: constituent transport and chemistry