Ozone entrainment flux using ozone DIAL and Compact Wind Aerosol Lidar (CWAL) in Huntsville AL
Abstract
Previous studies have proved that the impact of high ozone amounts in the residual layer can account for up to 80% of the surface ozone maxima during the following day. This high ozone in the residual layer mixes into to the Planetary Boundary Layer (PBL) through the entrainment processes as the growth of PBL occurs in the morning. Conversely, anthropogenic pollutants emitted from the surface mix into the Free Troposphere (FT) and are transported to other places. Therefore, entrainment flux is one of the important connections between the local-scale/urban-scale and the regional scale. In this study, we will present a study of ozone entrainment fluxes using continuous observation by co-located ozone DIAL and Compact Wind Aerosol Lidar (CWAL) at the campus of University of Alabama in Huntsville (UAH). As a part of Tropospheric Ozone Lidar NETwork (TOLNET), UAH ozone DIAL can provide continuous ozone observation at the range of 125 m AGL to 12 km, with 10-min temporal resolution and 150 - 550 m vertical resolution [Kuang et al., 2013]. We also perform an ozone budget study using Dutch Atmospheric Large-Eddy Simulation (DALES), reasonable approximations of dry deposition, in conjunction with ozone entrainment flux observations. We work towards building a comprehensive understanding of the quantitative impacts of ozone entrainment processes on surface ozone amounts in a medium-sized urban area like Huntsville AL. Shi Kuang, Michael J. Newchurch, John Burris, and Xiong Liu, "Ground-based lidar for atmospheric boundary layer ozone measurements," Appl. Opt. 52, 3557-3566 (2013)
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.A13A0152H
- Keywords:
-
- 0300 ATMOSPHERIC COMPOSITION AND STRUCTURE;
- 3307 ATMOSPHERIC PROCESSES Boundary layer processes