Structure of the Unramified L-packet
Abstract
Let $\boldsymbol{G}$ be an unramified connected reductive group defined over a non-archemedian local field $k$ and let $\boldsymbol{T}$ be a maximal torus in $\boldsymbol{G}.$ Let $\lambda$ be an unramified character of $\boldsymbol{T}.$ Then the conjugacy classes of hyperspecial subgroups of $\boldsymbol{G}(k)$ is a principal homogenous space for a certain finite abelian group $\hat{\Omega}$. Also, the $L$-packet $\Pi(\varphi_{\lambda})$ associated to $\lambda$ is parametrized by an abelian group $\hat{R}$. We show that $\hat{R}$ is naturally a homogenous space for $\hat{\Omega}$. Further, let $\pi_{\rho}\in\Pi(\varphi_{\lambda})$, where $\rho\in\hat{R}$ and let $[K]$ denote the conjugacy class of hyperspecial subgroup $K.$ Then we show that $\pi_{\rho}^{K}\neq0$ if and only if $\pi_{\omega\cdot\rho}^{K_{\omega}}\neq0$ where $\omega\in\hat{\Omega}$ and $K_{\omega}$ is any hyperspecial subgroup in the conjugacy class $\omega\cdot[K]$.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2012
- DOI:
- arXiv:
- arXiv:1212.1439
- Bibcode:
- 2012arXiv1212.1439M
- Keywords:
-
- Mathematics - Representation Theory;
- Mathematics - Number Theory
- E-Print:
- 29 Pages. Minor organizational changes and corrections. Typos fixed