Convergence to Scattering States in the Nonlinear Schrödinger Equation
Abstract
In this paper, we consider global solutions of the following nonlinear Schrödinger equation $iu_t+\Delta u+\lambda|u|^\alpha u = 0,$ in $\R^N,$ with $\lambda\in\R,$ $\alpha\in(0,\frac{4}{N-2})$ $(\alpha\in(0,\infty)$ if $N=1)$ and \linebreak $u(0)\in X\equiv H^1(\R^N)\cap L^2(|x|^2;dx).$ We show that, under suitable conditions, if the solution $u$ satisfies $e^{-it\Delta}u(t)-u_ \pm\to0$ in $X$ as $t\to\pm\infty$ then $u(t)-e^{it\Delta}u_\pm\to0$ in $X$ as $t\to\pm\infty.$ We also study the converse. Finally, we estimate $|\:\|u(t)\|_X-\|e^{it\Delta}u_\pm\|_X\:|$ under some less restrictive assumptions.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2012
- DOI:
- 10.48550/arXiv.1207.2034
- arXiv:
- arXiv:1207.2034
- Bibcode:
- 2012arXiv1207.2034B
- Keywords:
-
- Mathematics - Analysis of PDEs
- E-Print:
- Communications in Contemporary Mathematics 3, 3 (2001) 403-418