Low dimensional free and linear representations of $\mathrm{Out}(F_3)$
Abstract
We study homomorphisms from $\mathrm{Out}(F_3)$ to $\mathrm{Out}(F_5)$, and $\mathrm{GL}(m,K)$ for $m < 7$, where $K$ is a field of characteristic other than 2 or 3. We conclude that all $K$-linear representations of dimension at most 6 of $\mathrm{Out}(F_3)$ factor through $\mathrm{GL}(3,Z)$, and that all homomorphisms from $\mathrm{Out}(F_3)$ to $\mathrm{Out}(F_5)$ have finite image.
- Publication:
-
arXiv e-prints
- Pub Date:
- February 2012
- DOI:
- 10.48550/arXiv.1202.0923
- arXiv:
- arXiv:1202.0923
- Bibcode:
- 2012arXiv1202.0923K
- Keywords:
-
- Mathematics - Group Theory;
- Mathematics - Representation Theory;
- 20F65
- E-Print:
- Final version