A three dimensional ball quotient
Abstract
In connection with our previous investigation about Siegel threefolds which admit a Calabi--Yau model, we consider ball quotients which belong to the unitary group $\U(1,3)$. In this paper we determine a very particular example of a Picard modular variety of general type. Really we determine the ring of modular forms. This algebra has 25 generators, 15 modular forms $B_i$ of weight one and ten modular forms $C_j$ of weight 2. Both will appear as Borcherds products. We determine the ideal of relations. The forms $C_i$ are cuspidal. Their squares define holomorphic differential forms on the non-singular models.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2011
- arXiv:
- arXiv:1201.0131
- Bibcode:
- 2012arXiv1201.0131F
- Keywords:
-
- Mathematics - Algebraic Geometry;
- Mathematics - Number Theory
- E-Print:
- 35 pages