An integrated model for materials in a fusion power plant: transmutation, gas production, and helium embrittlement under neutron irradiation
Abstract
The high-energy, high-intensity neutron fluxes produced by the fusion plasma will have a significant life-limiting impact on reactor components in both experimental and commercial fusion devices. As well as producing defects, the neutrons bombarding the materials initiate nuclear reactions, leading to transmutation of the elemental atoms. Products of many of these reactions are gases, particularly helium, which can cause swelling and embrittlement of materials.
This paper integrates several different computational techniques to produce a comprehensive picture of the response of materials to neutron irradiation, enabling the assessment of structural integrity of components in a fusion power plant. Neutron-transport calculations for a model of the next-step fusion device DEMO reveal the variation in exposure conditions in different components of the vessel, while inventory calculations quantify the associated implications for transmutation and gas production. The helium production rates are then used, in conjunction with a simple model for He-induced grain-boundary embrittlement based on electronic-structure density functional theory calculations, to estimate the timescales for susceptibility to grain-boundary failure in different fusion-relevant materials. There is wide variation in the predicted grain-boundary-failure lifetimes as a function of both microstructure and chemical composition, with some conservative predictions indicating much less than the required lifetime for components in a fusion power plant.- Publication:
-
Nuclear Fusion
- Pub Date:
- August 2012
- DOI:
- Bibcode:
- 2012NucFu..52h3019G