Relativistic quantum information
Abstract
Over the past few years, a new field of high research intensity has emerged that blends together concepts from gravitational physics and quantum computing. Known as relativistic quantum information, or RQI, the field aims to understand the relationship between special and general relativity and quantum information.
Since the original discoveries of Hawking radiation and the Unruh effect, it has been known that incorporating the concepts of quantum theory into relativistic settings can produce new and surprising effects. However it is only in recent years that it has become appreciated that the basic concepts involved in quantum information science undergo significant revision in relativistic settings, and that new phenomena arise when quantum entanglement is combined with relativity. A number of examples illustrate that point. Quantum teleportation fidelity is affected between observers in uniform relative acceleration. Entanglement is an observer-dependent property that is degraded from the perspective of accelerated observers moving in flat spacetime. Entanglement can also be extracted from the vacuum of relativistic quantum field theories, and used to distinguish peculiar motion from cosmological expansion. The new quantum information-theoretic framework of quantum channels in terms of completely positive maps and operator algebras now provides powerful tools for studying matters of causality and information flow in quantum field theory in curved spacetimes. This focus issue provides a sample of the state of the art in research in RQI. Some of the articles in this issue review the subject while others provide interesting new results that will stimulate further research. What makes the subject all the more exciting is that it is beginning to enter the stage at which actual experiments can be contemplated, and some of the articles appearing in this issue discuss some of these exciting new developments. The subject of RQI pulls together concepts and ideas from special relativity, quantum optics, general relativity, quantum communication and quantum computation. The high level of current interest in these subjects is exemplified by the recent award of the 2012 Nobel Prize in Physics to Serge Haroche and David J Wineland for ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems. It is our hope that this issue will encourage new researchers to enter this rapidly developing and exciting new field. R B Mann and T C RalphGuest Editors
- Publication:
-
Classical and Quantum Gravity
- Pub Date:
- November 2012
- DOI:
- 10.1088/0264-9381/29/22/220301
- Bibcode:
- 2012CQGra..29v0301M