CLASH: Precise New Constraints on the Mass Profile of the Galaxy Cluster A2261
Abstract
We precisely constrain the inner mass profile of A2261 (z = 0.225) for the first time and determine that this cluster is not "overconcentrated" as found previously, implying a formation time in agreement with ΛCDM expectations. These results are based on multiple strong-lensing analyses of new 16-band Hubble Space Telescope imaging obtained as part of the Cluster Lensing and Supernova survey with Hubble. Combining this with revised weak-lensing analyses of Subaru wide-field imaging with five-band Subaru + KPNO photometry, we place tight new constraints on the halo virial mass M vir = (2.2 ± 0.2) × 1015 M ⊙ h -1 70 (within r vir ≈ 3 Mpc h -1 70) and concentration c vir = 6.2 ± 0.3 when assuming a spherical halo. This agrees broadly with average c(M, z) predictions from recent ΛCDM simulations, which span 5 <~ langcrang <~ 8. Our most significant systematic uncertainty is halo elongation along the line of sight (LOS). To estimate this, we also derive a mass profile based on archival Chandra X-ray observations and find it to be ~35% lower than our lensing-derived profile at r 2500 ~ 600 kpc. Agreement can be achieved by a halo elongated with a ~2:1 axis ratio along our LOS. For this elongated halo model, we find M vir = (1.7 ± 0.2) × 1015 M ⊙ h -1 70 and c vir = 4.6 ± 0.2, placing rough lower limits on these values. The need for halo elongation can be partially obviated by non-thermal pressure support and, perhaps entirely, by systematic errors in the X-ray mass measurements. We estimate the effect of background structures based on MMT/Hectospec spectroscopic redshifts and find that these tend to lower M vir further by ~7% and increase c vir by ~5%.
- Publication:
-
The Astrophysical Journal
- Pub Date:
- September 2012
- DOI:
- 10.1088/0004-637X/757/1/22
- arXiv:
- arXiv:1201.1616
- Bibcode:
- 2012ApJ...757...22C
- Keywords:
-
- dark energy;
- dark matter;
- galaxies: clusters: individual: Abell 2261;
- galaxies: evolution;
- gravitational lensing: strong;
- gravitational lensing: weak;
- Astrophysics - Cosmology and Nongalactic Astrophysics
- E-Print:
- Submitted to the Astrophysical Journal. 19 pages, 14 figures