AGN Triggering in the Infall Regions of Distant X-Ray Luminous Galaxy Clusters at 0.9 < z <~ 1.6
Abstract
Observational constraints on the average radial distribution profile of AGN in distant galaxy clusters can provide important clues on the triggering mechanisms of AGN activity in dense environments and are essential for a completeness evaluation of cluster selection techniques in the X-ray and mm-wavebands. The aim of this work is a statistical study with XMM-Newton of the presence and distribution of X-ray AGN in the large-scale structure environments of 22 X-ray luminous galaxy clusters in the redshift range 0.9 < z \lesssim 1.6 compiled by the XMM-Newton Distant Cluster Project (XDCP). To this end, the X-ray point source lists from detections in the soft-band (0.35-2.4 keV) and full-band (0.3-7.5 keV) were stacked in cluster-centric coordinates and compared to average background number counts extracted from three independent control fields in the same observations. A significant full-band (soft-band) excess of \sim78 (67) X-ray point sources is found in the cluster fields within an angular distance of 8' (4Mpc) at a statistical confidence level of 4.0 sigma (4.2 sigma), corresponding to an average number of detected excess AGN per cluster environment of 3.5\pm0.9 (3.0\pm0.7). The data point towards a rising radial profile in the cluster region (r<1Mpc) of predominantly low-luminosity AGN with an average detected excess of about one point source per system, with a tentative preferred occurrence along the main cluster elongation axis. A second statistically significant overdensity of brighter soft-band detected AGN is found at cluster-centric distances of 4'-6' (2-3Mpc), corresponding to about three times the average cluster radius R200 of the systems. If confirmed, these results would support the idea of two different physical triggering mechanisms of X-ray AGN activity in dependence of the radially changing large-scale structure environment of the distant clusters.
- Publication:
-
Advances in Astronomy
- Pub Date:
- 2012
- DOI:
- 10.1155/2012/138380
- arXiv:
- arXiv:1203.5337
- Bibcode:
- 2012AdAst2012E..32F
- Keywords:
-
- Astrophysics - Cosmology and Extragalactic Astrophysics
- E-Print:
- 18 pages, 7 color figures, accepted for publication in Advances in Astronomy for the special issue 'Seeking for the Leading Actor on the Cosmic Stage: Galaxies versus Supermassive Black Holes'