Global Model of Lower Band and Upper Band Chorus from Multiple Satellite Observations
Abstract
Gyroresonant wave particle interactions with whistler mode chorus play a fundamental role in the dynamics of the Earth's radiation belts and inner magnetosphere, affecting both the acceleration and loss of radiation belt electrons. Knowledge of the variability of chorus wave power as a function of both spatial location and geomagnetic activity, required for the computation of pitch angle and energy diffusion rates, is thus a critical input for global radiation belt models. Here we present a global model of lower band (0.1fce < f < 0.5fce) and upper band (0.5fce < f < fce) chorus, where fce is the local electron gyrofrequency, using data from five satellites, extending the coverage and improving the statistics of existing models. From the plasmapause out to L* = 10 the chorus emissions are found to be largely substorm dependent with the largest intensities being seen during active conditions. Equatorial lower band chorus is strongest during active conditions with peak intensities of the order 2000 pT^2 in the region 4 < L* < 9 between 2300 and 1200 MLT. Equatorial upper band chorus is both weaker and less extensive with peak intensities of the order a few hundred pT^2 during active conditions between 2300 and 1200 MLT from L* = 3 to L* = 7. Moving away from the equator mid-latitude chorus is strongest in the lower band during active conditions with peak intensities of the order 2000 pT^2 in the region 4 < L* < 9 but is restricted to the dayside between 0700 and 1400 MLT.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFMSM24A..05M
- Keywords:
-
- 2772 MAGNETOSPHERIC PHYSICS / Plasma waves and instabilities;
- 7867 SPACE PLASMA PHYSICS / Wave/particle interactions