Comparison of neural network and support vector machine methods for forecasting Kp
Abstract
We have compared near-real time Kp forecast models based on neural network (NN) and support vector machine (SVM) algorithms. We consider four models as follows: (1) a NN model using ACE solar wind data; (2) a SVM model using ACE solar wind data; (3) a NN model using ACE solar wind data and preliminary kp values from US ground-based magnetometers; (4) a SVM model using the same input data as model 3. For the comparison of these models, we estimate correlation coefficients and RMS errors between the observed Kp and the predicted Kp. As a result, we found that the model 3 is better than the other models. The values of correlation coefficients and RMS error of the model 3 are 0.93 and 0.48, respectively. For the forecast evaluation of models for geomagnetic storms (Kp ≥ 6), we present contingency tables and estimate statistical parameters such as probability of detection yes (PODy), false alarm ratio (FAR), bias, and critical success index (CSI). From a comparison of these statistical parameters, we found that the SVM models (model 2 and model 4) are better than the NN models (model 1 and model 3). The values of PODy and CSI of the model 4 are the highest among these models (PODy: 0.57 and CSI: 0.48). From these results, we suggest that the NN models are better than the SVM models for predicting Kp and the SVM models are better than the NN models for forecasting geomagnetic storms.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFMSM23C2331J
- Keywords:
-
- 7924 SPACE WEATHER / Forecasting