The Atsa Suborbital Observatory: An Observatory for a Commercial Suborbital Spacecraft
Abstract
The advantages of astronomical observations made above Earth's atmosphere have long been understood: free access to spectral regions inaccessible from Earth (e.g., UV) or affected by the atmosphere's content (e.g., IR). Most robotic, space-based telescopes maintain large angular separation between the Sun and an observational target in order to avoid accidental damage to instruments from the Sun. For most astronomical targets, this possibility is easily avoided by waiting until objects are visible away from the Sun. For the Solar System objects inside Earth's orbit, this is never the case. Suborbital astronomical observations have over 50 years' history using NASA's sounding rockets and experimental space planes. Commercial suborbital spacecraft are largely expected to go to ~100 km altitude above Earth, providing a limited amount of time for astronomical observations. The unique scientific advantage to these observations is the ability to point close to the Sun: if a suborbital spacecraft accidentally turns too close to the Sun and fries an instrument, it is easy to land the spacecraft and repair the hardware for the next flight. Objects uniquely observed during the short observing window include inner-Earth asteroids, Mercury, Venus, and Sun-grazing comets. Both open-FOV and target-specific observations are possible. Despite many space probes to the inner Solar System, scientific questions remain. These include inner-Earth asteroid size and bulk density informing Solar System evolution studies and efforts to develop methods of mitigation against imminent impactors to Earth; chemistry and dynamics of Venus' atmosphere addressing physical phenomena such as greenhouse effect, atmospheric super-rotation and global resurfacing on Venus. With the Atsa Suborbital Observatory, we combine the strengths of both ground-based observatories and space-based observing to create a facility where a telescope is maintained and used interchangeably with both in-house facility instruments or user-provided instruments. Rapid turnaround will depend only on flight frequency. Data are stored on-board for retrieval when the spacecraft lands. We provide robust instrumentation that can survive suborbital spaceflight, assessment of the feasibility of the requested observations, rigorous scripting of the telescope operation, integration of the telescope plus instrument in a provider spacecraft, and periodic preventive maintenance for the telescope and instrument suite. XCOR Aerospace's Lynx III spacecraft is the best candidate vehicle to host a suborbital astronomical observatory. Unlike other similar vehicles, the Lynx will operate with only 1 or 2 people onboard (the pilot and an operator), allowing for each mission to be totally dedicated to the observation (no tourists will be bumping about; no other experiments will affect spacecraft pointing). A stable platform, the Lynx can point to an accuracy of ± 0.5o. Fine pointing is done by the telescope system. Best of all, the Lynx has a dorsal pod that opens directly to space. For astronomical observations, the best window is NO window. Currently, we plan to deploy a 20" diameter telescope in the Lynx III dorsal pod. XCOR Aerospace has the goal of eventually maintaining a Lynx flight frequency capability of 4 times/day. As with any observatory, Atsa will be available for observations by the community at large.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFMSA13B2176V
- Keywords:
-
- 1640 GLOBAL CHANGE / Remote sensing;
- 5464 PLANETARY SCIENCES: SOLID SURFACE PLANETS / Remote sensing