Potential contributions to space geodesy from the IridiumNEXT constellation
Abstract
The IridiumNEXT constellation will soon replace the existing Iridium satellite telecommunication network, with initial launches set to start in 2015. In addition to the primary task of providing global telecommunication services, each IridiumNEXT satellite will also carry a hosted payload that will provide both private and public institutions the opportunity to place an instrument suite on one or all of constellation's satellites. This creates the possibility to gather continuous, global observations of Earth over the entire 15 year projected mission lifetime. Access to such a platform creates the potential to investigate many of Earth's highly dynamic processes at a spatiotemporal resolution that is simply not possible from single-satellite missions. Space geodesy is one the numerous fields that would benefit from such a mission. Precise orbits of the IridiumNEXT satellites derived through an on-board GNSS receiver (plus accelerometers and star cameras) have the potential to observe the large-scale, high-frequency variations in Earth's gravity field at time scales as short as one day. Additional positioning data from ground-based laser ranging stations would help improve the orbit determination, in addition to providing the necessary link to improve estimates of geocenter motion and reference frames. In this presentation, we will analyze the expected geodetic science returns from such a mission and will discuss the instrumental requirements needed to achieve these objectives.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFMSA11B..01G
- Keywords:
-
- 1217 GEODESY AND GRAVITY / Time variable gravity;
- 1294 GEODESY AND GRAVITY / Instruments and techniques