Controls on net carbon accumulation in North American peatlands: Insights from 210Pb dated cores
Abstract
Northern peatlands cover only 3-4 % of the Earth's land surface area, yet store hugh quantities (250-450 Pg) of carbon as peat. These peatlands generally are believed to function as net sinks for atmospheric CO2 today, with C fixation by net primary production at the peat surface exceeding C losses by organic matter mineralization throughout the peat column. Various aspects of peatland structure and function are influenced by a variety of factors, including local climatic conditions and atmospheric deposition of N and S. Here we examine continental-scale patterns in recent net C accumulation in peatlands across North America, combining the published data for eastern Canada from Moore et al. (2004, Global Change Biology) and Turunen et al. (2004, Global Biogeochemical Cycles) with our data from boreal sites in western Canada (Alberta) and from temperate sites in the U.S. Across these sites, mean annual, January, and July temperatures ranged from 0.6 to 9.1, -20.5 to -1.6, and 11.3 to 20.8 oC, respecticely, mean annual precipitation, rainfall, and snowfall ranged from 406 to 1480, 289 to 1156 and 112 to 415 mm, respectively, growing degree days (above 5 oC) ranged from 947 to 4467, and annual wet N and S deposition ranged from 0.9 to 8.1 and 0.4 to 13.4 kg/ha/yr. For 67 cores, net C accumulation in peat over the past 50 years was determined by 210Pb dating and ranged from 492 to 1781 kg/ha/yr. Net C accumulation (kg/ha/yr) was positively correlated with mean annual precipitation (p = 0.0129), mean annual snowfall (p = 0.0010) and wet deposition of both N (p < 0.0001) and S (p = 0.0003). However, both the climatic and wet deposition variables exhibit similar gradients across North America, and hence are coufounded. Stepwise regression revealed that 53% of the overall variation in net C accumulation could be explained by only two variables, wet N deposition (p < 0.0001; R2 = 0.35) and mean annual temperature (p = 0.0106; R2 = 0.07), with the regression model of net C accumulation (kg/ha/yr) = 913 + (950 x wet N deposition) - (46 x mean annual temperature). The effects of ongoing climate change, notably warming and changing regional patterns of atmospheric N deposition, may have ramifications for peatland carbon cycling.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFMPP21E..08W
- Keywords:
-
- 0414 BIOGEOSCIENCES / Biogeochemical cycles;
- processes;
- and modeling;
- 0428 BIOGEOSCIENCES / Carbon cycling;
- 0439 BIOGEOSCIENCES / Ecosystems;
- structure and dynamics;
- 0497 BIOGEOSCIENCES / Wetlands