Assessing modern climatic controls on southern Sierra Nevada precipitation and speleothem δ18O
Abstract
Precipitation in the southwestern United States (SW US) is highly seasonal and exhibits inter-annual to inter-decadal variability. A 1154-year δ18O time series obtained from a southwestern Sierra Nevada Mountain stalagmite from Crystal Cave, CRC-3, (36.58°N; 118.56°W; 1540 m) reveals substantial decadal to multi-decadal variability closely linked to the Pacific Decadal Oscillation (PDO), and more specifically, to sea surface temperatures (SSTs) in the Kuroshio Extension region, which impact the atmospheric trajectory and isotopic composition of moisture reaching the study site. The instrumental portion of the CRC-3 δ18O time series suggests that more negative precipitation δ18O values are delivered from higher latitudes during positive phases of the PDO and/or when SSTs in the Kuroshio Extension region are anomalously cool, such as during La Niña events. In order to improve our understanding of the controls on speleothem δ18O in this region, we have conducted a detailed modern study of the climate, hydrology, and stable isotopic composition of meteoric waters (precipitation and drip water) at the cave. Here we present Crystal Cave drip logger results from 2010 to 2012, the isotopic composition of North American Deposition Program precipitation samples collected from 2001 to 2012 from several locations near our site including Ash Mountain (ASM), Sequoia National Park-Giant Forest (Ca75), and Yosemite National Park (Ca99), and isotopic composition of cave drip water and glass plate calcite. We also compare the δ18O values in the precipitation to satellite imagery, NCAR/NCEP data, and NOAA Hysplit Model backward trajectories between the sites. Results indicate that this site is particularly sensitive to "Pineapple Express" type storms, a persistent flow of atmospheric moisture and heavy rainfall extending from near the Hawaiian Islands to the coast of North America, which average about twice as much precipitation as other storms in the Sierra Nevada during winter. Crystal Cave drip logger results indicate a low drip rate variability in the cave between July 2010 and July 2011, averaging between ~25 drips/hour but we observe a significant increase during three "Pineapple Express" type storms (PE) during the 2010-2011 winter. Analysis of the δ18O of precipitation samples collected during these storms events exhibit significantly more negative values which could complicate the interpretation of speleothem δ18O if the relative contribution of PE moisture varies on interannual to multi-decadal timescales.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFMPP21B2021M
- Keywords:
-
- 1041 GEOCHEMISTRY / Stable isotope geochemistry;
- 1833 HYDROLOGY / Hydroclimatology;
- 1846 HYDROLOGY / Model calibration;
- 4958 PALEOCEANOGRAPHY / Speleothems