The applicability of OSL as a sedimentological proxy: new avenues to distinguish extreme events
Abstract
Signature underwater tsunami deposits have been relatively recently found in the upper Mediterranean shelf offshore Israel. They have been attributed as a potential cause for the demise of the ancient Roman city of Caesarea Maritima and its artificial Herodian harbour of Sebastos. Present annual large winter storm activity (2010-2011; waves heights up to 14 m) has severely impacted the area, showing increased coastal erosion and rigorous movement of nearshore sands, complicating the stratigraphical histories of the near offshore record. Recent sedimentological and geoarchaeological studies conducted in and around the harbour have been aimed to investigate extreme event characterization by different means, using Optically Stimulated Luminescence (OSL). A comparative study of modern and palaeo-storm sediments was launched in order to obtain physical correlation between offshore sediments, enabling further comparison with historical tsunami deposits, as well as modern and ancient sands emplaced during normal marine conditions. A suite of previously collected and identified sediment samples was selected from the same area where the modern storm analogues were collected. The palaeo-samples came from long-vertical hydraulic percussion cores (14-30 m depths) and small horizontal tubes pushed into excavated underwater sediment walls (2-12 m depths). The uniqueness of OSL relays on its capacity to date the last time a mineral grain was effectively exposed to sunlight, just prior to its burial. It is intrinsically related to final depositional process, which should reflect the completeness of the OSL signal resetting (zeroing process), evidenced by the normality and modality of the Equivalent Dose (DE) distribution. In Optical Dating, DE over-dispersion values have been used as a measure of inhomogeneitiy in the natural palaeo-dose of sediments. Such heterogeneity can be due to an array of causes, including insufficient zeroing during transport and deposition, or turbation processes after burial. Environments where sediments are well exposed to daylight at deposition (e.g. aeolian and some coastal) do not show extreme over-dispersion values but rather well clustered DE's as noted by probability-distribution plots. The degrees of variance and skewness of Gaussian or relative-probability distributions are intrinsically related to the scatter factor. Hence, the latter could be used to differentiate between depositional mechanisms and/or environmental settings. In this study, the single-aliquot regenerative-dose (SAR) protocol was used to measure the OSL signals from single grains of quartz from tsunami, storm and normal marine conditions deposits. Over-dispersion analyses were conducted on all samples. Preliminary results suggest the possibility of differentiating between all three types of deposits based on pre-established over-dispersion values and representative single-dose population distributions. Further comparative OSL experiments are currently being carried out on other known tsunamigenic analogues to further evaluate OSL signal behaviours and constrain the findings (2011 Tohoku Tsunami; 1979 night Petatlán Tsunami). Rather than a dating tool, OSL was used to identify signal patterns exclusive to known depositional conditions, in hope of applying it as sedimentological proxy in event stratigraphy and palaeoseismic tsunami research.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFMOS33B1827L
- Keywords:
-
- 1165 GEOCHRONOLOGY / Sedimentary geochronology;
- 4217 OCEANOGRAPHY: GENERAL / Coastal processes;
- 4564 OCEANOGRAPHY: PHYSICAL / Tsunamis and storm surges;
- 4313 NATURAL HAZARDS / Extreme events