Convective Available Potential Energy of World Ocean
Abstract
Here, for the first time, we propose the concept of Ocean Convective Available Potential Energy (OCAPE), which is the maximum kinetic energy (KE) per unit seawater mass achievable by ocean convection. OCAPE occurs through a different mechanism from atmospheric CAPE, and involves the interplay of temperature and salinity on the equation of state of seawater. The thermobaric effect, which arises because the thermal coefficient of expansion increases with depth, is an important ingredient of OCAPE. We develop an accurate algorithm to calculate the OCAPE for a given temperature and salinity profile. We then validate our calculation of OCAPE by comparing it with the conversion of OCAPE to KE in a 2-D numerical model. We propose that OCAPE is an important energy source of ocean deep convection and contributes to deep water formation. OCAPE, like Atmospheric CAPE, can help predict deep convection and may also provide a useful constraint for modelling deep convection in ocean GCMs. We plot the global distribution of OCAPE using data from the World Ocean Atlas 2009 (WOA09) and see many important features. These include large values of OCAPE in the Labrador, Greenland, Weddell and Mediterranean Seas, which are consistent with our present observations and understanding, but also identify some new features like the OCAPE pattern in the Antarctic Circumpolar Current (ACC). We propose that the diagnosis of OCAPE can improve our understanding of global patterns of ocean convection and deep water formation as well as ocean stratification, the meridional overturning circulation and mixed layer processes. The background of this work is briefly introduced as below. Open-ocean deep convection can significantly modify water properties both at the ocean surface and throughout the water column (Gordon 1982). Open-ocean convection is also an important mechanism for Ocean Deep Water formation and the transport of heat, freshwater and nutrient (Marshall and Schott 1999). Open-ocean convection may arise through strong surface buoyancy fluxes (Schott et al. 1996), or by thermobaric instability (Akitomo 1999a, b). Ingersoll (2005) demonstrated that thermobaric-induced deep convection is due to the abrupt release of ocean potential energy into kinetic energy. In atmospheric dynamics, Convective Available Potential Energy (CAPE) has long been an important thermodynamic variable (Arakawa and Schubert 1974) that has been used to forecast moist convection (Doswell and Rasmussen 1994) and to test the performance of GCMs (Ye et al. 1998). However, the development of a similar diagnostic in the ocean has received little attention.; World Ocean Convective Available Potential Energy distribution in North-Hemisphere Autumn (J/kg)
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFMOS31C1749S
- Keywords:
-
- 4207 OCEANOGRAPHY: GENERAL / Arctic and Antarctic oceanography;
- 4500 OCEANOGRAPHY: PHYSICAL;
- 4532 OCEANOGRAPHY: PHYSICAL / General circulation;
- 4534 OCEANOGRAPHY: PHYSICAL / Hydrodynamic modeling