The effect of the mineral dissolution and deformation of slope stability on nature terrane
Abstract
A landslide on nature terrane is mainly occurred by rainfall, snowmelt, earthquakes and rock/soil weathering process. Especially, the role of rainfall and rock/soil weathering in slope stability is very important because it causes decreased in shear strength by reducing the soil cohesion. Quartz is the most abundant crust-forming mineral on earth. This mineral contributes to the formation of crystalline rocks such as granite, gneiss, and sandstone. Therefore, in case of the slope consisted by granite, gneiss, and sandstone, the slope stability can be affected by the mineral weathering process such as mineral dissolution and deformation because the shear strength, one of the key factors to calculate the slope stability, can be reduced by mineral weathering. That is, mineral weathering including dissolution and deformation between the minerals can reduce the soil cohesion on nature terrane. Many studies have found that quartz exhibits a notably slow rate of dissolution at room temperature. Therefore, to achieve rapid dissolution at room temperature, other methods should be considered, including 1) expanding the surface area of quartz to increase the reaction area and 2) applying high pressure to the contact area of crystals to increase the dissolution rate. However, dissolution of the surface of quartz is difficult to observe when using powdered quartz to maximize the surface area. Therefore, we used beads and single quartz crystals to observe and analyze the dissolution of the surface. The former can be used to maximize the surface area of quartz, and high-pressure conditions can be applied to the latter. A confocal laser scanning microscope (CLSM) was subsequently used to observe the dissolution patterns on the quartz surface. Numerical analyses using the finite element method (FEM) were also performed to quantify the deformation of the contact area. Quartz dissolution was observed in both experiments. This deformation was due to a concentrated compressive stress field, as indicated by the quartz deformation of the contact area through the FEM analysis. According to the numerical results, a high compressive stress field acted upon the neighboring contact area, which showed a rapid dissolution rate compared to other areas of the sample.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFMNH13A1578C
- Keywords:
-
- 4315 NATURAL HAZARDS / Monitoring;
- forecasting;
- prediction