Hydromechanical modeling of clay rock including fracture damage
Abstract
Argillaceous rock typically acts as a flow barrier, but under certain conditions significant and potentially conductive fractures may be present. Fracture formation is well-known to occur in the vicinity of underground excavations in a region known as the excavation disturbed zone. Such problems are of particular importance for low-permeability, mechanically weak rock such as clays and shales because fractures can be relatively transient as a result of fracture self-sealing processes. Perhaps not as well appreciated is the fact that natural fractures can form in argillaceous rock as a result of hydraulic overpressure caused by phenomena such as disequlibrium compaction, changes in tectonic stress, and mineral dehydration. Overpressure conditions can cause hydraulic fracturing if the fluid pressure leads to tensile effective stresses that exceed the tensile strength of the material. Quantitative modeling of this type of process requires coupling between hydrogeologic processes and geomechanical processes including fracture initiation and propagation. Here we present a computational method for three-dimensional, hydromechanical coupled processes including fracture damage. Fractures are represented as discrete features in a fracture network that interact with a porous rock matrix. Fracture configurations are mapped onto an unstructured, three-dimensonal, Voronoi grid, which is based on a random set of spatial points. Discrete fracture networks (DFN) are represented by the connections of the edges of a Voronoi cells. This methodology has the advantage that fractures can be more easily introduced in response to coupled hydro-mechanical processes and generally eliminates several potential issues associated with the geometry of DFN and numerical gridding. A geomechanical and fracture-damage model is developed here using the Rigid-Body-Spring-Network (RBSN) numerical method. The hydrogelogic and geomechanical models share the same geometrical information from a 3D Voronoi grid and associated nodes, where the scalar field quantities (e.g. temperature, pressure, and saturation) and the generalized displacements are obtained by an integral finite difference method (e.g., TOUGH2) and RBSN, respectively. Fractures propagate along Voronoi cell boundaries as induced stresses evolve and exceed the material strength. Examples of fracture propagation in clay rock are examined for the excavation disturbed zone and for cases in which hydraulic overpressure leads to hydraulic fracture. Fluid flow behavior in these evolving fracture networks and eventual fracture closing and self-sealing are investigated. Funding for this work was provided by the Used Fuel Disposition Campaign, Office of Nuclear Energy, of the U.S. Department of Energy under Contract NumberDE-AC02-05CH11231 with Berkeley Lab.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFMMR23D..07A
- Keywords:
-
- 1822 HYDROLOGY / Geomechanics;
- 1847 HYDROLOGY / Modeling;
- 1849 HYDROLOGY / Numerical approximations and analysis