Ground-Truthing Moderate Resolution Satellite Imagery with Near-Surface Canopy Images in Hawai'i's Tropical Cloud Forests
Abstract
Phenological studies are gaining importance globally as the onset of climate change is impacting the timing of green up and senescence in forest canopies and agricultural regions. Many studies use and analyze land surface phenology (LSP) derived from satellite vegetation index time series (VI's) such as those from Moderate Resolution Imaging Spectroradiometer (MODIS) to monitor changes in phenological events. Seasonality is expected in deciduous temperate forests, while tropical regions are predicted to show more static reflectance readings given their stable and steady state. Due to persistent cloud cover and atmospheric interference in tropical regions, satellite VI time series are often subject to uncertainties and thus require near surface vegetation monitoring systems for ground-truthing. This study has been designed to assess the precision of MODIS phenological signatures using above-canopy, down-looking digital cameras installed on flux towers on the Island of Hawai'i. The cameras are part of the expanding Phenological Eyes Network (PEN) which has been implementing a global network of above-canopy, hemispherical digital cameras for forest and agricultural phenological monitoring. Cameras have been installed at two locations in Hawaii - one on a flux tower in close proximity to the Thurston Lave Tube (HVT) in Hawai'i Volcanoes National Park and the other on a weather station in a section of the Hawaiian Tropical Experimental Forest in Laupaphoehoe (LEF). HVT consists primarily of a single canopy species, ohi'a lehua (Metrosideros polymorpha), with an understory of hapu'u ferns (Cibotium spp), while LEF is similarly comprised with an additional dominant species, Koa (Acacia Koa), included in the canopy structure. Given these species' characteristics, HVT is expected to show little seasonality, while LEF has the potential to deviate slightly during periods following dry and wet seasons. MODIS VI time series data are being analyzed and will be compared to images from the cameras which will have VI's extracted from their RGB image planes and will be normalized to be comparable with MODIS VI's. Given Hawai'i's susceptibility to invasion and delicacy of its endemic species, results from this study will provide necessary site specific detail in determining the reliability of satellite based inference in similar tropical phenology studies. Should satellite images provide adequate information, results from this study will allow for extrapolation across similar understudied tropical forests.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFMIN53B1739B
- Keywords:
-
- 0480 BIOGEOSCIENCES / Remote sensing;
- 1640 GLOBAL CHANGE / Remote sensing