Meteosat Third Generation (MTG) Development in the Context of Other Future Geostationary Satellite Observations
Abstract
Meteosat Third Generation (MTG) will provide continuity to the European Meteosat observations which are currently performed with Meteosat Second Generation (MSG). MSG takes images in 12 channels with a repeat rate of 15 minutes for the full disk. The future MTG satellites will expand the capabilities far beyond those of MSG with an enhanced imager (FCI) which has 16 channels and a 10 minutes repeat cycle for taking images of the earth's full disk. Especially the novel instruments on MTG a) Lightning Imager (LI), hyperspectral InfraRed Sounder (IRS) and the Ultraviolet-Visible-Near infrared spectrometer (UVN) will provide unprecedented observations. The four instruments will fly on two types of satellites, the imaging satellites (MTG-I) carrying the FCI and LI, and the sounding satellites (MTG-S) carrying the IRS and UVN. The UVN instrument is provided by the European Space Agency (ESA) and the European GMES (Global Monitoring and Environmental Security) programme. The first launch of an imaging satellite is foreseen for 2017. In total the MTG series will serve us with four MTG-I and two MTG-S satellites for about two decades. MTG has been defined to meet the requirements of the user community, i.e. mainly users in Europe. However an interesting perspective is to see the development of the European MTG satellite system in the context of the evolution of the global space-based meteorological satellite system, notably those from geostationary orbit. Satellite agencies in the US, Japan, China and Europe will fly advanced imagers comparable to the FCI on MTG. Therefore there is also scope for a common evolution of the applications of the observations which is being addressed inter alia by CGMS (Coordination Group for Meteorological Satellites). Various agencies will also realise lightning observations from space. Other instruments on MTG (IRS and UVN) can be seen as pioneering realisations in a geostationary orbit of measurements known from polar orbits. This step into the geostationary orbit will enable a high temporal repeat cycle of the observations. For water vapour this means that for the first time observations from space are being made with a temporal resolution commensurate with the spatial resolution. The presentation will present the status of the instrument and applications development. It will also highlight the current cooperation opportunities created by the similarity of the future observing systems.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFMIN43E..04S
- Keywords:
-
- 3300 ATMOSPHERIC PROCESSES