On geodynamo integrations conserving momentum flux
Abstract
The equations governing the geodynamo are most often integrated by representing the magnetic field and fluid velocity by toroidal and poloidal scalars (for example, MAG code [1]). This procedure does not automatically conserve the momentum flux. The results can, particularly for flows with large shear, introduce significant errors, unless the viscosity is artificially increased. We describe a method that evades this difficulty, by solving the momentum equation directly while properly conserving momentum. It finds pressure by FFT and cyclic reduction, and integrates the governing equations on overlapping grids so avoiding the pole problem. The number of operations per time step is proportional to N3 where N is proportional to the number of grid points in each direction. This contrasts with the order N4 operations of standard spectral transform methods. The method is easily parallelized. It can also be easily adapted to schemes such as the Weighted Essentially Non-Oscillatory (WENO) method [2], a flux based procedure based on upwinding that is numerically stable even for zero explicit viscosity. The method has been successfully used to investigate the generation of magnetic fields by flows confined to spheroidal containers and driven by precessional and librational forcing [3, 4]. For spherical systems it satisfies dynamo benchmarks [5]. [1] MAG, http://www.geodynamics.org/cig/software/mag [2] Liu, XD, Osher, S and Chan, T, Weighted Essentially Nonoscillatory Schemes, J. Computational Physics, 115, 200-212, 1994. [3] Wu, CC and Roberts, PH, On a dynamo driven by topographic precession, Geophysical & Astrophysical Fluid Dynamics, 103, 467-501, (DOI: 10.1080/03091920903311788), 2009. [4] Wu, CC and Roberts, PH, On a dynamo driven topographically by longitudinal libration, Geophysical & Astrophysical Fluid Dynamics, DOI:10.1080/03091929.2012.682990, 2012. [5] Christensen, U, et al., A numerical dynamo benchmark, Phys. Earth Planet Int., 128, 25-34, 2001.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFMGP21A1152W
- Keywords:
-
- 0560 COMPUTATIONAL GEOPHYSICS / Numerical solutions;
- 1500 GEOMAGNETISM AND PALEOMAGNETISM;
- 1510 GEOMAGNETISM AND PALEOMAGNETISM / Dynamo: theories and simulations