Impact of the Gulf of California SST on simulating precipitation and crop productivity in the Southwestern United States
Abstract
Like other ecosystems, agricultural productivity is substantially affected by climate factors. Therefore, accurate climatic data (i.e. precipitation, temperature, and radiation) is crucial to simulating crop yields. In order to understand and anticipate climate change and its impacts on agricultural productivity in the Southwestern United States, the WRF regional climate model (RCM) and the Agricultural Production Systems sIMulator (APSIM) were employed for simulating crop production. 19 years of WRF RCM output show that there is a strong dry bias during the warm season, especially in Arizona. Consequently, the APSIM crop model indicates very low crop yields in this region. We suspect that the coarse resolution of reanalysis data could not resolve the relatively warm Sea Surface Temperature (SST) in the Gulf of California (GC), causing the SST to be up to 10 degrees lower than the climatology. In the Southwestern United States, a significant amount of precipitation is associated with North American Monsoon (NAM). During the monsoon season, the low-level moisture is advected to the Southwestern United States via the GC, which is known to be the dominant moisture source. Thus, high-resolution SST data in the GC is required for RCM simulations to accurately represent a reasonable amount of precipitation in the region, allowing reliable evaluation of the impacts on regional ecosystems.and evaluate impacts on regional ecosystems. To evaluate the influence of SST on agriculture in the Southwestern U.S., two sets of numerical simulations were constructed: a control, using unresolved SST of GC, and daily updated SST data from the MODIS satellite sensor. The meteorological drivers from each of the 6 year RCM runs were provided as input to the APSIM model to determine the crop yield. Analyses of the simulated crop production, and the interannual variation of the meteorological drivers, demonstrate the influence of SST on crop yields in the Southwestern United States.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFMGC41B0971K
- Keywords:
-
- 0402 BIOGEOSCIENCES / Agricultural systems;
- 1622 GLOBAL CHANGE / Earth system modeling;
- 1630 GLOBAL CHANGE / Impacts of global change;
- 1637 GLOBAL CHANGE / Regional climate change