Changes in Nutrients and Primary Production in Barrow Tundra Ponds Over the Past 40 Years
Abstract
The Arctic tundra ponds at the International Biological Program (IBP) site in Barrow, Alaska were studied extensively in the 1970's; however, very little research has occurred there since that time. Due to the sensitivity of this region to climate warming, understanding any changes in the ponds' structure and function over the past 40 years can help identify any potential climate-related impacts. The goal of this study was to determine if the structure and function of primary producers had changed through time, and the association between these changes, urban encroachment and nutrient limitation. Nutrient levels, as well as the biomass of aquatic graminoids (Carex aquatilis and Arctophila fulva), phytoplankton and periphyton were determined in the IBP tundra ponds in both 1971-3 and 2010-12, and in 2010-11 from nearby ponds along an anthropogenic disturbance gradient. Uptake of 14C was also used to measure algal primary production in both time periods and nutrient addition experiments were performed to identify the nutrients limiting algal growth. Similar methods were utilized in the past and present studies. Overall, biomass of graminoids, phytoplankton and periphyton was greater in 2010-12 than that observed in the 1970s. This increased biomass was coincident with warmer water temperatures, increased water column nutrients and deeper active layer depth. Biomass of plants and algae was highest in the ponds closest to the village of Barrow, but no effect of urban encroachment was observed at the IBP ponds. Laboratory incubations indicated that nutrient release from thawing permafrost can explain part of these increases in nutrients and has likely contributed to changes in the primary limiting nutrient. Further studies are necessary to better understand the implications of these trends in primary production to nutrient budgets in the Arctic. The Barrow IBP tundra ponds represent one of the very few locations in the Arctic where long-term data are available on freshwater ecosystem structure and function. Continued monitoring and protection of these invaluable sites is required to help understand the implications of climate change on Arctic freshwater ecosystems.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFMGC21A0942L
- Keywords:
-
- 0439 BIOGEOSCIENCES / Ecosystems;
- structure and dynamics;
- 0470 BIOGEOSCIENCES / Nutrients and nutrient cycling;
- 1615 GLOBAL CHANGE / Biogeochemical cycles;
- processes;
- and modeling;
- 1630 GLOBAL CHANGE / Impacts of global change