High-resolution Global Crop Simulation Design and Implementation for Sustainability and Climate Change Analysis
Abstract
International communities seek expanded understanding of the land use change issues associated with food and bioenergy production, and climate change; however, the existing assessments of large-scale deployment, utilization, and sustainability of crop production systems are insufficiently quantitative at the global scale. To undertake this broad analysis of large-scale crop production, an analysis framework to meet the challenges with a regionally and globally distributed agroecosystem model is needed. We designed a global modeling platform of crop production, consisting of five major components: (i) standardized global natural resources and management databases, ii) global simulation unit and management scenarios, iii) model calibration and validation, iv) high-performance computing (HPC) modeling, and v) simulation output processing and analysis. A case study with the HPC-EPIC model and a perennial bioenergy crop, switchgrass (Panicum virgatum L.) and global biomass productivity analysis on grassland was conducted to demonstrate the application of this platform. The results indicated that this modeling platform was effective to catch global productivity variability of switchgrass and applicable for the global analysis of crop production and sustainability. Future efforts include enhancing the databases of crops and implementing global simulations for various crops and studying impacts, adaptation and vulnerability of climate change. We anticipated this platform to provide effective tools and assessment data for international communities to conduct global analysis of crop production and sustainability associated with climate change issues.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFMGC13B1076K
- Keywords:
-
- 0402 BIOGEOSCIENCES / Agricultural systems;
- 1615 GLOBAL CHANGE / Biogeochemical cycles;
- processes;
- and modeling