Basin Wide Erosion and Soil Production Rates of a High Altitude Plateau in the Korean Peninsula Considered as an Uplifted Paleo Erosional Surface: Implications for Its Development Process and the Tectonics
Abstract
The development process of High Altitude Plateaus (HAPs) has been a controversial issue in geomorphology. HAPs have been interpreted as uplifted erosional surfaces mainly controlled by fluvial processes. Recent studies, however, argued that the definition of the Paleo Erosional Surfaces (PESs) is ambiguous and HAPs, considered as the uplifted PESs, could be formed under various local lithologic, tectonic and climatic conditions. But these suggestions were severely limited by the lack of quantitative data in the field. Here, we investigate this issue of the development process of HAPs through estimating both basin wide erosion rates and soil production rates of the Daegwanryeong area in the Korean Peninsula (KP), where a HAP with low-relief hilly landscape is found. Study area has been known as a typical one of PESs in the KP, which have been uplifted since the early Miocene. Particularly deeply weathered saprolites, easily found in the study area, have also been believed to be resulted from the Tertiary deep weathering under higher temperature at the paleo sea level. First, analysis of 10Be in saprolite from the base of the soil column, except one under no soil mantle, shows that soil production rates decline linearly with increasing soil depth. These data provide a soil production function with a maximum soil production rate of 70.6m/m.y. under 24cm of soil and a minimum of 22m/m.y. under 75cm of soil. Accordingly it means that the interface between soil and saprolite have gone down maximum 141.2 m since the Quaternary. Thus it suggests that the saprolites are the results under current local climatic and geomorphic conditions rather than the relict of the Tertiary deep weathering. Second, measurements of 10Be in alluvial sediments show that the average erosion rate (70.7m/m.y.) of the study area is close to the maximum soil production rate, thus basin wide erosion rates of the study area are controlled by the current soil production rates. It means that about 1,400m has been eroded off since the early Miocene, when uplift of the KP seems to begin. Consequently it is difficult to think the HAP of the study area as the PES as well as one, which has been eroded keeping the original form of the PES. Furthermore, the erosion rates are lower than the uplift rates during the late Quaternary (about 300m/m.y.), but similar to the uplift rates before the early Miocene (about 100m/m.y.). Therefore, it suggests that the HAP of the study area has been uplifted since the early Miocene, but has not approached the steady state with the neotectonics of the KP. In summary, we suggest that the HAP of the study area is the result of the geomorphic process under current climatic and geomorphic condition rather than the relict of the PES.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFMEP41D0824B
- Keywords:
-
- 0790 CRYOSPHERE / Weathering;
- 1040 GEOCHEMISTRY / Radiogenic isotope geochemistry;
- 1824 HYDROLOGY / Geomorphology: general;
- 1865 HYDROLOGY / Soils