Dynamic Landscapes and Sea Level Change in Human Evolution and Dispersal
Abstract
Archaeological studies of human settlement in its wider landscape setting usually focus on climate change as the principal environmental driver of change in the physical features of the landscape, even on the long time scales of early human evolution. We emphasize that landscapes evolve dynamically due to an interplay of processes occurring over different timescales. Tectonic deformation, volcanism, sea level changes, by acting on the topography, the lithology and on the patterns of erosion-deposition in a given area, can moderate or amplify the influence of climate at the regional and local scale. These processes impose or alleviate physical barriers to movement, and modify the distribution and accessibility of plant and animal resources in ways critical to human ecological and evolutionary success (King and Bailey, JHE 2006; Bailey and King, Antiquity 2011). The DISPERSE project, an ERC-funded collaboration between the University of York and the Institut de Physique du Globe de Paris,are developing systematic methods for reconstructing landscapes associated with active tectonics, volcanism and sea level change at a variety of scales in order to study their potential impact on patterns of human evolution and dispersal. These approaches use remote sensing techniques combined with archaeological and tectonic field surveys on land and underwater. Examples are shown from Europe, the Middle East and Africa to illustrate the ways in which changes of significance to human settlement can occur at a range of geographical scales and on time scales that range from lifetimes to tens of millennia, creating and sustaining attractive conditions for human settlement and exercising powerful selective pressures on human development.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFMEP41C0818K
- Keywords:
-
- 0439 BIOGEOSCIENCES / Ecosystems;
- structure and dynamics;
- 0498 BIOGEOSCIENCES / General or miscellaneous;
- 8175 TECTONOPHYSICS / Tectonics and landscape evolution