Using Case Studies to Teach Interdisciplinary Water Resource Sustainability
Abstract
Teaching about water resources and often emphasizes the biophysical sciences to understand highly complex hydrologic, ecologic and engineering systems, yet most impediments to improving management emerge from social processes. Challenges to more sustainable management often result from trade-offs among stakeholders (e.g., ecosystem services, energy, municipal use, and agriculture) and occur while allocating resources to competing goals of economic development, social equity, and efficient governance. Competing interests operating across multiple scales can increase tensions and prevent collaborative resolution of resource management problems. Here we discuss using specific, place-based cases to teach the interdisciplinary context of water management. Using a case approach allows instructors to first explore the geologic and hydrologic setting of a specific problem to let students understand where water comes from, then how it is used by people and ecosystems, and finally what conflicts arise from mismatches between water quality, quantity, timing, human demand, and ecosystem needs. The case approach helps students focus on specific problem to understand how the landscape influences water availability, without needing to first learn everything about the relevant fields. We look at geology, hydrology and climate in specific watersheds before addressing the human and ecosystem aspects of the broader, integrated system. This gives students the context to understand what limits water availability and how a water budget constrains possible solutions to sustainability problems. It also mimics the approach we have taken in research addressing these problems. In an example case the Spokane Coeur D'Alene basin, spanning the border between SE Washington and NW Idaho, includes a sole source aquifer system with high exchange between surface water and a highly conductive aquifer. The Spokane River does not meet water quality standards and is likely to face climate driven shifts in precipitation which will alter both water availability and dilution capacity. Possible stakeholders include not only municipal, agricultural and industrial water users but also several levels of regulatory governance as the watershed crosses state lines and includes tribal lands. While the water system is bound by the limits of stratigraphy and hydrology, there are feedbacks to the physical system revealed feedbacks to the physical system resulting from decisions, preferences, and beliefs of the stakeholders. The complexity of these feedbacks are most easily explored through discussion of the specific case, which can then be generalized. The course design encourages participation and let students discuss, argue, and think critically about real problems they can identify with and that interest them. Walking through the cases shows students how complicated environmental problem-solving can be in a way that they internalize and how these ideas are then transferable to other situations.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFMED53F0953O
- Keywords:
-
- 0810 EDUCATION / Post-secondary education;
- 0825 EDUCATION / Teaching methods;
- 1880 HYDROLOGY / Water management