Textural changes of FER-A peridotite in time series piston-cylinder experiments at 1.0 GPa, 1300°C
Abstract
A series of eight 1.0 GPa, 1300°C partial melting experiments were performed using FER-A peridotite starting material to investigate potential textural changes in the residual crystalline phases over time. Powdered peridotite with a layer of vitreous carbon spheres as a melt sink were sealed in graphite-lined Pt capsules and run in CaF2 furnace assemblies in 1.27cm piston-cylinder apparatus at the University of Oregon. Run durations ranged from 4 to 128 hours. Experimental charges were mounted in epoxy, cut, and polished for analysis. In a first attempt to quantify the mineral textures, individual 500x BSE images were collected from selected, representative locations on each of the experimental charges using the FEI Quanta 250 ESEM at Humboldt State University. Noran System Seven (NSS) EDS system was used to collect x-ray maps (spectral images) to aid in identification of phases. A combination of image analysis techniques within NSS and ImageJ software are being used to process the images and quantify the mineral textures observed. The goals are to quantify the size, shape, and abundance of residual olivine (ol), orthopyroxene (opx), clinopyroxene (cpx), and spinel crystals within the selected sample areas of the run products. Additional work will be done to compare the results of the selected areas with larger (lower magnification) images acquired using the same techniques. Preliminary results indicate that measurements of average grain area, minimum grain area, and average, maximum, and minimum grain perimeter show the greatest change (generally decreasing) in measurements for ol, opx, and cpx between the shortest-duration, 4-hour, experiment and the subsequent, 8-hour, experiment. The largest relative change in nearly all of these measurements appears to be for cpx. After the initial decrease, preliminary measurements remain relatively constant for ol, opx, and cpx, respectively, in experiments from 8 to 128 hours in duration. In contrast, measured parameters of spinel grains increase from the 4-hour to 8-hour experiment and continue to fluctuate over the time interval investigated. Spinel also represents the smallest number of individual grains (average n = 25) in any experiment. Average aspect ratios for all minerals remain relatively constant (~1.5-2) throughout the time series. Additional measurements and refinements are underway.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFM.V51A2746S
- Keywords:
-
- 3630 MINERALOGY AND PETROLOGY / Experimental mineralogy and petrology