Chemical characterization and metal abundance in Sri Lankan serpentine soils
Abstract
Chemical weathering of ultramafic rocks and their related soils provide localized sources of metal contamination. In Sri Lanka, rural communities live in close proximity to these rocks and soils and utilize associated groundwaters where human intake of these high metal sources may have adverse human health effects. This study investigates metal abundances and variations in Sri Lankan serpentine soils to begin evaluating potential human health hazards. Specifically, we examine serpentinite occurrences at Ussangoda, Wasgamuwa, Ginigalpelessa, and Indikolapelessa located at the geological boundary between the Highland and Vijayan Complexes. The pH of the soils are near neutral (6.26 to 7.69) with soil electrical conductivities (EC) ranging from 33.5 to 129.9 μS cm-1, a range indicative of relatively few dissolved salts and/or major dissolved inorganic solutes. The highest EC is from the Ussangoda soil which may be due to the atmospheric deposition of salt spray from the sea. Organic carbon contents of the soils range from 1.09% to 2.58%. The highest organic carbon percentage is from the Wasgamuwa soil which is located in a protected preserve. X-ray fluorescence (XRF) spectrometry and total metal digestion results show that all serpentine soils are Fe-, Cr-, and Ni-rich with abundant aluminosilicate minerals. Nickel is highest in the Ussangoda soil (6,459 mg kg-1), while Cr (>10,000 mg kg-1), Co (441 mg kg-1) and Mn (2,263 mg kg-1) are highest in the Wasgamuwa serpentine soil. Additionally, Mn (2,200 mg kg-1) and Co (400 mg kg-1) are present at high concentrations in the Wasgamuwa and Ginigalpelessa soils respectively. Electron microprobe mapping demonstrates that these heavy metals are not homogeneously distributed where Cr is specifically associated with Al and Fe phases. Metal speciation of these serpentine soils are currently being investigated using X-ray absorption spectroscopy (XAS) to provide better constraints with regards to their mobility and toxicity.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFM.V43A2806V
- Keywords:
-
- 1000 GEOCHEMISTRY